ﻻ يوجد ملخص باللغة العربية
Gauge fields provide the fundamental interactions in the Standard Model of particle physics. Gauge field configurations with nontrivial topological windings are known to play crucial roles in many important phenomena, from matter-anti-matter asymmetry of todays universe to the permanent quark confinement. Their presence is however elusive for direct detection in experiments. Here we show that measurements of the chiral magnetic effect (CME) in heavy ion collisions can be used for counting the topological windings of the non-Abelian gauge fields in the Quantum Chromodynamics (QCD). To achieve this, we implemented a key ingredient, the stochastic dynamics of gauge field topological fluctuations, into a state-of-the-art framework for simulating the CME in these collisions. This tool has allowed us to quantitatively extract, for the first time, the initial topological windings $Q_w$ from the CME experimental data, revealing a universal scaling relation between $Q_w$ and the particle multiplicity produced in the corresponding collision events.
Topological charge changing transitions can induce chirality in the quark-gluon plasma by the axial anomaly. We study the equilibrium response of the quark-gluon plasma in such a situation to an external magnetic field. To mimic the effect of the top
The topological structure of vacuum is the cornerstone of non-Abelian gauge theories describing strong and electroweak interactions within the standard model of particle physics. However, transitions between different topological sectors of the vacuu
The non-central Cu + Au collisions can create strong out-of-plane magnetic fields and in-plane electric fields. By using the HIJING model, we study the general properties of the electromagnetic fields in Cu + Au collisions at 200 GeV and their impact
We study axion effective field theories (EFTs), with a focus on axion couplings to massive chiral gauge fields. We investigate the EFT interactions that participate in processes with an axion and two gauge bosons, and we show that, when massive chira
The chiral magnetic effect (CME) induces an electric charge separation in a chiral medium along the magnetic field that is mostly produced by spectator protons in heavy-ion collisions. The experimental searches for the CME, based on the charge-depend