ﻻ يوجد ملخص باللغة العربية
Eye tracking tools are used in software engineering research to study various software development activities. However, a major limitation of these tools is their inability to track gaze data for activities that involve source code editing. We present a novel solution to support eye tracking experiments for tasks involving source code edits as an extension of the iTrace community infrastructure. We introduce the iTrace-Atom plugin and gazel -- a Python data processing pipeline that maps gaze information to changing source code elements and provides researchers with a way to query this dynamic data. iTrace-Atom is evaluated via a series of simulations and is over 99% accurate at high eye-tracking speeds of over 1,000Hz. iTrace and gazel completely revolutionize the way eye tracking studies are conducted in realistic settings with the presence of scrolling, context switching, and now editing. This opens the doors to support many day-to-day software engineering tasks such as bug fixing, adding new features, and refactoring.
Code review is an important quality assurance activity for software development. Code review discussions among developers and maintainers can be heated and sometimes involve personal attacks and unnecessary disrespectful comments, demonstrating, ther
Interactive evolution has shown the potential to create amazing and complex forms in both 2-D and 3-D settings. However, the algorithm is slow and users quickly become fatigued. We propose that the use of eye tracking for interactive evolution system
In recent years there has been a considerable effort in optimising formal methods for application to code. This has been driven by tools such as CPAChecker, DIVINE, and CBMC. At the same time tools such as Uppaal have been massively expanding the rea
Mutation analysis can provide valuable insights into both System Under Test (SUT) and its test suite. However, it is not scalable due to the cost of building and testing a large number of mutants. Predictive Mutation Testing (PMT) has been proposed t
We explore the applicability of Graph Neural Networks in learning the nuances of source code from a security perspective. Specifically, whether signatures of vulnerabilities in source code can be learned from its graph representation, in terms of rel