ﻻ يوجد ملخص باللغة العربية
Inspired by the capability of structured illumination microscopy in subwavelength imaging, many researchers devoted themselves to investigating this methodology. However, due to the free propagating feature of the traditional structured illumination fields, the resolution can be only improved up to double times compared with the diffractied limited microscopy. Besides, most of the previous studies, relying on incoherent illumination sources, are restricted to fluorescent samples. In this work, a subwavelength nonfluorescent imaging method is proposed based on the terahertz traveling wave and plasmonics illumination. Excited along with a metal grating, the spoof surface plasmons are employed as the plasmonics illumination. When the scattering waves with the SSPs illumination are captured, the high order spatial frequency components of the sample are already encoded into the obtainable low order ones. Then, an algorithm is summarized to shift the modulated SF components to their actual positions in the Fourier domain. In this manner, high order SF components carrying the fine information are introduced to reconstruct the desired imaging, leading to an improvement of the resolution up to 0.12 lambda. Encouragingly, the resolution can be further enhanced by tuning the working frequency of the SSPs. This method holds promise for some important applications in terahertz nonfluorescent microscopy and sample detection with weak scattering.
Terahertz subwavelength imaging aims at developing THz microscopes able to resolve deeply subwavelength features. To improve the spatial resolution beyond the diffraction limit, a current trend is to use various subwavelength probes to convert the ne
Video-rate super-resolution imaging through biological tissue can visualize and track biomolecule interplays and transportations inside cellular organisms. Structured illumination microscopy allows for wide-field super resolution observation of biolo
Light propagates symmetrically in opposite directions in most materials and structures. This fact -- a consequence of the Lorentz reciprocity principle -- has tremendous implications for science and technology across the electromagnetic spectrum. Her
We report a line scanning imaging modality of compressive Raman technology with spatial frequency modulated illumination using a single pixel detector. We demonstrate the imaging and classification of three different chemical species at line scan rates of 40 Hz.
Localization of single fluorescent molecules is key for physicochemical and biophysical measurements such as single-molecule tracking and super-resolution imaging by single-molecule localization microscopy (SMLM). Recently a series of methods have be