ترغب بنشر مسار تعليمي؟ اضغط هنا

On the Ergodic Capacity of Reconfigurable Intelligent Surface (RIS)-Aided MIMO Channels

159   0   0.0 ( 0 )
 نشر من قبل Chongjun Ouyang
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Reconfigurable intelligent surfaces (RISs) have emerged as a promising technique to enhance the system spectral efficiency. This letter investigates the ergodic channel capacity (ECC) of an RIS-aided multiple-input multiple-output channel under the assumption that the transmitter-RIS, RIS-receiver, and transmitter-receiver channels contain deterministic line-of-sight paths. Novel expressions are derived to characterize the upper and lower bounds of the ECC. To unveil more system insights, asymptotic analyses are performed to the system ECC in the limit of large signal-to-noise ratio (SNR) and number of reflecting elements (REs). Theoretical analyses suggest that the RISs deployment can shape the ECC curve by influencing its high-SNR power offset and the ECC can get improved by increasing the number of REs.



قيم البحث

اقرأ أيضاً

147 - Kangda Zhi , Cunhua Pan , Hong Ren 2021
This letter investigates the reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems with a two-timescale design. First, the zero-forcing (ZF) detector is applied at the base station (BS) based on instanta neous aggregated CSI, which is the superposition of the direct channel and the cascaded user-RIS-BS channel. Then, by leveraging the channel statistical property, we derive the closed-form ergodic achievable rate expression. Using a gradient ascent method, we design the RIS passive beamforming only relying on the long-term statistical CSI. We prove that the ergodic rate can reap the gains on the order of $mathcal{O}left(log_{2}left(MNright)right)$, where $M$ and $N$ denote the number of BS antennas and RIS elements, respectively. We also prove the striking superiority of the considered RIS-aided system with ZF detectors over the RIS-free systems and RIS-aided systems with maximum-ratio combining (MRC).
134 - Yuanwei Liu , Xidong Mu , Xiao Liu 2020
This article focuses on the exploitation of reconfigurable intelligent surfaces (RISs) in multi-user networks employing orthogonal multiple access (OMA) or non-orthogonal multiple access (NOMA), with an emphasis on investigating the interplay between NOMA and RIS. Depending on whether the RIS reflection coefficients can be adjusted only once or multiple times during one transmission, we distinguish between static and dynamic RIS configurations. In particular, the capacity region of RIS aided single-antenna NOMA networks is characterized and compared with the OMA rate region from an information-theoretic perspective, revealing that the dynamic RIS configuration is capacity-achieving. Then, the impact of the RIS deployment location on the performance of different multiple access schemes is investigated, which reveals that asymmetric and symmetric deployment strategies are preferable for NOMA and OMA, respectively. Furthermore, for RIS aided multiple-antenna NOMA networks, three novel joint active and passive beamformer designs are proposed based on both beamformer based and cluster based strategies. Finally, open research problems for RIS-NOMA networks are highlighted.
177 - Shuowen Zhang , Rui Zhang 2019
Intelligent reflecting surface (IRS) is a promising solution to enhance the wireless communication capacity both cost-effectively and energy-efficiently, by properly altering the signal propagation via tuning a large number of passive reflecting unit s. In this paper, we aim to characterize the fundamental capacity limit of IRS-aided point-to-point multiple-input multiple-output (MIMO) communication systems with multi-antenna transmitter and receiver in general, by jointly optimizing the IRS reflection coefficients and the MIMO transmit covariance matrix. First, we consider narrowband transmission under frequency-flat fading channels, and develop an efficient alternating optimization algorithm to find a locally optimal solution by iteratively optimizing the transmit covariance matrix or one of the reflection coefficients with the others being fixed. Next, we consider capacity maximization for broadband transmission in a general MIMO orthogonal frequency division multiplexing (OFDM) system under frequency-selective fading channels, where transmit covariance matrices can be optimized for different subcarriers while only one common set of IRS reflection coefficients can be designed to cater to all subcarriers. To tackle this more challenging problem, we propose a new alternating optimization algorithm based on convex relaxation to find a high-quality suboptimal solution. Numerical results show that our proposed algorithms achieve substantially increased capacity compared to traditional MIMO channels without the IRS, and also outperform various benchmark schemes. In particular, it is shown that with the proposed algorithms, various key parameters of the IRS-aided MIMO channel such as channel total power, rank, and condition number can be significantly improved for capacity enhancement.
We investigate a reconfigurable intelligent surface (RIS)-aided multi-user massive multiple-input multi-output (MIMO) system where low-resolution digital-analog converters (DACs) are configured at the base station (BS) in order to reduce the cost and power consumption. An approximate analytical expression for the downlink achievable rate is derived based on maximum ratio transmission (MRT) and additive quantization noise model (AQNM), and the rate maximization problem is solved by particle swarm optimization (PSO) method under both continuous phase shifts (CPSs) and discrete phase shifts (DPSs) at the RIS. Simulation results show that the downlink sum achievable rate tends to a constant with the increase of the number of quantization bits of DACs, and four quantization bits are enough to capture a large portion of the performance of the ideal perfect DACs case.
111 - Kangda Zhi , Cunhua Pan , Hong Ren 2021
This paper investigates the two-timescale transmission design for reconfigurable intelligent surface (RIS)-aided massive multiple-input multiple-output (MIMO) systems, where the beamforming at the base station (BS) is adapted to the rapidly-changing instantaneous channel state information (CSI), while the passive beamforming at the RIS is adapted to the slowly-changing statistical CSI. Specifically, we first propose a linear minimum mean square error (LMMSE) estimator to obtain the aggregated channel from the users to the BS in each channel coherence interval. Based on the estimated channel, we apply the low-complexity maximal ratio combining (MRC) beamforming at the BS, and then derive the ergodic achievable rate in a closed form expression. To draw design insights, we perform a detailed theoretical analysis departing from the derived ergodic achievable rate. If the BS-RIS channel is Rician distributed, we prove that the transmit power can be scaled proportionally to $1/M$, as the number of BS antennas, $M$, grows to infinity while maintaining a non-zero rate. If the BS-RIS channel is Rayleigh distributed, the transmit power can be scaled either proportionally to $1/sqrt{M}$ as $M$ grows large, or proportionally to $1/N$ as the number of reflecting elements, $N$, grows large, while still maintaining a non-zero rate. By capitalizing on the derived expression of the data rate under the statistical knowledge of the CSI, we maximize the minimum user rate by designing the passive beamforming at the RIS. Numerical results confirm that, even in the presence of imperfect CSI, the integration of an RIS in massive MIMO systems results in promising performance gains. In addition, the obtained results reveal that it is favorable to place the RIS close to the users rather than close to the BS.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا