ﻻ يوجد ملخص باللغة العربية
We study hybrid stars considering the effects on stellar stability of the hadron-quark conversion speed at the sharp interface. The equation of state is constructed by combining a model-agnostic hadronic description with a constant speed of sound model for quark matter. We show that current LIGO/Virgo, NICER, low-density nuclear and high-density perturbative QCD constraints can be satisfied in two scenarios with low and high transition pressures. If the conversion speed is slow, a new class of hybrid objects is possible and very stiff hadronic equations of state cannot be discarded.
The equation of state (EoS) of hot and dense matter is a fundamental input to describe static and dynamical properties of neutron stars, core-collapse supernovae and binary compact-star mergers. We review the current status of the EoS for compact obj
We model the cooling of hybrid neutron stars combining a microscopic nuclear equation of state in the Brueckner-Hartree-Fock approach with different quark models. We then analyze the neutron star cooling curves predicted by the different models and s
According to the braneworld idea, ordinary matter is confined on a 3-dimensional space (brane) that is embedded in a higher-dimensional space-time where gravity propagates. In this work, after reviewing the limits coming from general relativity, fini
This volume contains most of the links to the presentations delivered at this international workshop. This meeting was the second in the series following the previous I Encuentro Iberico de Compstar, held at the University of Coimbra, Portugal in 201
The effect of pasta phases on the quark-hadron phase transition is investigated for a set of relativistic mean-field equations of state for both hadron and quark matter. The results of the full numerical solution with pasta phases are compared with t