ﻻ يوجد ملخص باللغة العربية
Kagom${e}$ lattice is a fertile platform for topological and intertwined electronic excitations. Recently, experimental evidence of an unconventional charge density wave (CDW) is observed in a Z2 kagom${e}$ metal AV$_{3}$Sb$_{5}$ (A= K, Cs, Rb). This observation triggers wide interests on the interplay between frustrated crystal structure and Fermi surface instabilities. Here we analyze the lattice effect and its impact on CDW in AV$_{3}$Sb$_{5}$. Based on published experimental data, we show that the CDW induced structural distortions is consistent with the theoretically predicted inverse star-of-David pattern, which preserves the $D_{6h}$ symmetry in the kagom${e}$ plane but breaks the sixfold rotational symmetry of the crystal due to the phase shift between kagom${e}$ layers. The coupling between the lattice and electronic degrees of freedom yields a weak first order structural transition without continuous change of lattice dynamics. Our result emphasizes the fundamental role of lattice geometry in proper understanding of unconventional electronic orders in AV$_{3}$Sb$_{5}$.
The entanglement of charge density wave (CDW), superconductivity, and topologically nontrivial electronic structure has recently been discovered in the kagome metal $A$V$_3$Sb$_5$ ($A$ = K, Rb, Cs) family. With high-resolution angle-resolved photoemi
We report on a detailed study of the optical properties of CsV$_{3}$Sb$_{5}$ at a large number of temperatures above and below the charge-density-wave (CDW) transition. Above the CDW transition, the low-frequency optical conductivity reveals two Drud
The recently discovered family of AV$_3$Sb$_5$ (A: K, Rb Cs) kagome metals possess a unique combination of nontrivial band topology, superconducting ground states, and signatures of electron correlations manifest via competing charge density wave ord
The so-called stripe phase of the manganites is an important example of the complex behaviour of metal oxides, and has long been interpreted as the localisation of charge at atomic sites. Here, we demonstrate via resistance measurements on La_{0.50}C
Microscopic spin interactions on a deformed Kagom{e} lattice of volborthite are investigated through magnetoelastic couplings. A negative longitudinal magnetostriction $Delta L<0$ in the $b$ axis is observed, which depends on the magnetization $M$ wi