ترغب بنشر مسار تعليمي؟ اضغط هنا

Magnetic field generation by charge exchange in a supernova remnant in the early universe

42   0   0.0 ( 0 )
 نشر من قبل Shuhei Kashiwamura
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present new generation mechanisms of magnetic fields in supernova remnant shocks propagating to partially ionized plasmas in the early universe. Upstream plasmas are dissipated at the collisionless shock, but hydrogen atoms are not dissipated because they do not interact with electromagnetic fields. After the hydrogen atoms are ionized in the shock downstream region, they become cold proton beams that induce the electron return current. The injection of the beam protons can be interpreted as an external force acting on the downstream proton plasma. We show that the effective external force and the electron return current can generate magnetic fields without any seed magnetic fields. The magnetic field strength is estimated to be $Bsim 10^{-14}-10^{-11}~{rm G}$, where the characteristic lengthscale is the mean free path of charge exchange, $sim 10^{15}~{rm cm}$. Since protons are marginally magnetized by the generated magnetic field in the downstream region, the magnetic field could be amplified to larger values and stretched to larger scales by turbulent dynamo and expansion.



قيم البحث

اقرأ أيضاً

A number of studies suggest that shock acceleration with particle feedback and very efficient magnetic-field amplification combined with Alfv{e}nic drift are needed to explain the rather soft radio spectrum and the narrow rims observed for Tychos SNR . We show that the broadband spectrum of Tychos SNR can alternatively be well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock should be efficient enough to impact particle spectra over several decades in energy. The so-called Alfv{e}nic drift and particle feedback on the shock structure are not required in this scenario. Additionally, we investigate whether synchrotron losses or magnetic-field damping play a more profound role in the formation of the non-thermal filaments. We solve the full particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magnetic field is either computed from the induction equation or follows analytic profiles, depending on the model considered. Fast-mode waves in the downstream region provide the diffusion of particles in momentum space. We show that the broadband spectrum of Tycho can be well explained if magnetic-field damping and stochastic re-acceleration of particles are taken into account. Although not as efficient as standard DSA, stochastic acceleration leaves its imprint on the particle spectra, which is especially notable in the emission at radio wavelengths. We find a lower limit for the post-shock magnetic-field strength $sim330,mathrm{mu G}$, implying efficient amplification even for the magnetic-field damping scenario. For the formation of the filaments in the radio range magnetic-field damping is necessary, while the X-ray filaments are shaped by both the synchrotron losses and magnetic-field damping.
The first metal enrichment in the universe was made by supernova (SN) explosions of population (Pop) III stars. The trace remains in abundance patterns of extremely metal-poor (EMP) stars. We investigate the properties of nucleosynthesis in Pop III S Ne by means of comparing their yields with the abundance patterns of the EMP stars. We focus on (1) jet-induced SNe with various energy deposition rates [$dot{E}_{rm dep}=(0.3-1500)times10^{51}{rm ergs s^{-1}}$], and (2) SNe of stars with various main-sequence masses ($M_{rm ms}=13-50M_odot$) and explosion energies [$E=(1-40)times10^{51}$ergs]. The varieties of Pop III SNe can explain varieties of the EMP stars: (1) higher [C/Fe] for lower [Fe/H] and (2) trends of abundance ratios [X/Fe] against [Fe/H].
Particle acceleration to suprathermal energies in strong astrophysical shock waves is a widespread phenomenon, generally explained by diffusive shock acceleration. Such shocks can also amplify upstream magnetic field considerably beyond simple compre ssion. The complex plasma physics processes involved are often parameterized by assuming that shocks put some fraction $epsilon_e$ of their energy into fast particles, and another fraction $epsilon_B$ into magnetic field. Modelers of shocks in supernovae, supernova remnants, and gamma-ray bursters, among other locations, often assume typical values for these fractions, presumed to remain constant in time. However, it is rare that enough properties of a source are independently constrained that values of the epsilons can be inferred directly. Supernova remnants (SNRs) can provide such circumstances. Here we summarize results from global fits to spatially integrated emission in six young SNRs, finding $10^{-4} le epsilon_e le 0.05$ and $0.001 le epsilon_B le 0.1$. These large variations might be put down to the differing ages and environments of these SNRs, so we conduct a detailed analysis of a single remnant, that of Keplers supernova. Both epsilons can be determined at seven different locations around the shock, and we find even larger ranges for both epsilons, as well as for their ratio (thus independent of the shock energy itself). We conclude that unknown factors have a large influence on the efficiency of both processes. Shock obliquity, upstream neutral fraction, or other possibilities need to be explored, while calculations assuming fixed values of the epsilons should be regarded as provisional.
We present a polarimetric study of the pulsar wind nebula (PWN) in supernova remnant G21.5$-$0.9 using archival Very Large Array (VLA) data. The rotation measure (RM) map of the PWN shows a symmetric pattern that aligns with the presumed pulsar spin axis direction, implying a significant contribution of RM from the nebula. We suggest that the spatial variation of the internal RM is mostly caused by non-uniform distribution of electrons originated from the supernova ejecta. Our high-resolution radio polarization map reveals an overall radial $B$-field. We construct a simple model with an overall radial $B$-field and turbulence in small scale. The model can reproduce many of the observed features of the PWN, including the polarization pattern and polarized fraction. The results also reject a large-scale toroidal $B$-field which implies that the toroidal field observed in the inner PWN cannot propagate to the entire nebula.
107 - Gregory S. Vance 2020
Mixing above the proto-neutron star is believed to play an important role in the supernova engine, and this mixing results in a supernova explosion with asymmetries. Elements produced in the innermost ejecta, e.g., ${}^{56}$Ni and ${}^{44}$Ti, provid e a clean probe of this engine. The production of ${}^{44}$Ti is particularly sensitive to the exact production pathway and, by understanding the available pathways, we can use ${}^{44}$Ti to probe the supernova engine. Using thermodynamic trajectories from a three-dimensional supernova explosion model, we review the production of these elements and the structures expected to form under the convective-engine paradigm behind supernovae. We compare our results to recent X-ray and $gamma$-ray observations of the Cassiopeia A supernova remnant.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا