ﻻ يوجد ملخص باللغة العربية
We study a pair of Calabi-Yau threefolds X and M, fibered in non-principally polarized Abelian surfaces and their duals, and an equivalence D^b(X) = D^b(M), building on work of Gross, Popescu, Bak, and Schnell. Over the complex numbers, X is simply connected while pi_1(M) = (Z/3)^2. In characteristic 3, we find that X and M have different Hodge numbers, which would be impossible in characteristic 0. In an appendix, we give a streamlined proof of Abuafs result that the ring H^*(O) is a derived invariant of complex threefolds and fourfolds. A second appendix by Alexander Petrov gives a family of higher-dimensional examples to show that h^{0,3} is not a derived invariant in any positive characteristic.
In this paper, we compute the number of covers of curves with given branch behavior in characteristic p for one class of examples with four branch points and degree p. Our techniques involve related computations in the case of three branch points, an
We study isogenies between K3 surfaces in positive characteristic. Our main result is a characterization of K3 surfaces isogenous to a given K3 surface $X$ in terms of certain integral sublattices of the second rational $ell$-adic and crystalline coh
We start with a curve over an algebraically closed ground field of positive characteristic $p>0$. By using specialization techniques, under suitable natural coprimality conditions, we prove a cohomological Simpson Correspondence between the moduli sp
We study the existence of Fuchsian differential equations in positive characteristic with nilpotent p-curvature, and given local invariants. In the case of differential equations with logarithmic local mononodromy, we determine the minimal possible degree of a polynomial solution.
We discuss two elementary constructions for covers with fixed ramification in positive characteristic. As an application, we compute the number of certain classes of covers between projective lines branched at 4 points and obtain information on the s