ترغب بنشر مسار تعليمي؟ اضغط هنا

Associated molecular and atomic clouds with X-ray shell of superbubble 30 Doradus C in the LMC

134   0   0.0 ( 0 )
 نشر من قبل Hidetoshi Sano
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

30 Doradus C is a superbubble which emits the brightest nonthermal X- and TeV gamma-rays in the Local Group. In order to explore detailed connection between the high energy radiation and the interstellar medium, we have carried out new CO and HI observations using the Atacama Large Millimeter$/$Submillimeter Array (ALMA), Atacama Submillimeter Telescope Experiment, and the Australia Telescope Compact Array with resolutions of up to 3 pc. The ALMA data of $^{12}$CO($J$ = 1-0) emission revealed 23 molecular clouds with the typical diameters of $sim$6-12 pc and masses of $sim$600-10000 $M_{odot}$. The comparison with the X-rays of $XMM$-$Newton$ at $sim$3 pc resolution shows that X-rays are enhanced toward these clouds. The CO data were combined with the HI to estimate the total interstellar protons. Comparison of the interstellar proton column density and the X-rays revealed that the X-rays are enhanced with the total proton. These are most likely due to the shock-cloud interaction modeled by the magnetohydrodynamical simulations (Inoue et al. 2012, ApJ, 744, 71). Further, we note a trend that the X-ray photon index varies with distance from the center of the high-mass star cluster, suggesting that the cosmic-ray electrons are accelerated by one or multiple supernovae in the cluster. Based on these results we discuss the role of the interstellar medium in cosmic-ray particle acceleration.

قيم البحث

اقرأ أيضاً

We present evidence of diffuse, non-thermal X-ray emission from the superbubble 30 Doradus C (30 Dor C) using hard X-ray images and spectra from NuSTAR observations. For this analysis, we utilize data from a 200 ks targeted observation of 30 Dor C as well as 2.8 Ms of serendipitous off-axis observations from the monitoring of nearby SN 1987A. The complete shell of 30 Dor C is detected up to 20 keV, and the young supernova remnant MCSNR J0536-6913 in the southeast of 30 Dor C is not detected above 8 keV. Additionally, six point sources identified in previous Chandra and XMM-Newton investigations have hard X-ray emission coincident with their locations. Joint spectral fits to the NuSTAR and XMM-Newton spectra across the 30 Dor C shell confirm the non-thermal nature of the diffuse emission. Given the best-fit rolloff frequencies of the X-ray spectra, we find maximum electron energies of 70-110 TeV (assuming a B-field strength of 4$mu$G), suggesting 30 Dor C is accelerating particles. Particles are either accelerated via diffusive shock acceleration at locations where the shocks have not stalled behind the H$alpha$ shell, or cosmic-rays are accelerated through repeated acceleration of low-energy particles via turbulence and magnetohydrodynamic waves in the bubbles interior.
We carry out spatially resolved spectral analysis with a physical scale of $sim$10 pc in X-ray for the superbubble 30 Dor C, which has the largest diameter of $sim$80 pc and the brightest non-thermal emission in superbubbles for the first time. We ai m at investigating spatial variation of the physical properties of non-thermal emission as detected in some supernova remnants in order to study particle acceleration in a superbubble. We demonstrated that non-thermal components are detected in all the regions covering the entire field of 30 Dor C. The spectra in the west region of 30 Dor C can be described with a combination of the thermal and non-thermal components while the spectra in the east region can be fitted with the non-thermal component alone. The photon index and absorption corrected intensity in 2-10 keV of the non-thermal component show spatial variation from $sim$2.0 to $sim$3.7 and (4-130) $times$ 10$^{-8}$ erg~s$^{-1}$~cm$^{-2}$~str$^{-1}$, respectively, and the negative correlation between the non-thermal physical properties is observed. The temperature and normalization of the thermal component also vary within a range of $sim$0.2-0.3 keV and $sim$0.2-7 $times$ 10$^{17}$ cm$^{-5}$ str$^{-1}$, respectively, and the positive correlation between the photon index and the normalization is also detected. We revealed the correlations in a supperbubble for the first time as is the case in SNRs, which suggests the possibility that the same acceleration mechanism works also in the supperbubble.
87 - M. Kuriki , H. Sano , N. Kuno 2017
We carried out $^{12}$CO($J$ = 1-0) observations of the Galactic gamma-ray supernova remnant (SNR) Kesteven 79 using the Nobeyama Radio Observatory 45 m radio telescope, which has an angular resolution of $sim20$ arcsec. We identified molecular and a tomic gas interacting with Kesteven 79 whose radial velocity is $sim80$ km s$^{-1}$. The interacting molecular and atomic gases show good spatial correspondence with the X-ray and radio shells, which have an expanding motion with an expanding velocity of $sim4$ km s$^{-1}$. The molecular gas associated with the radio and X-ray peaks also exhibits a high-intensity ratio of CO 3-2/1-0 $>$ 0.8, suggesting a kinematic temperature of $sim24$ K, owing to heating by the supernova shock. We determined the kinematic distance to the SNR to be $sim5.5$ kpc and the radius of the SNR to be $sim8$ pc. The average interstellar proton density inside of the SNR is $sim360$ cm$^{-3}$, of which atomic protons comprise only $sim10$ $%$. Assuming a hadronic origin for the gamma-ray emission, the total cosmic-ray proton energy above 1 GeV is estimated to be $sim5 times 10^{48}$ erg.
84 - Gabriele Ponti 2010
We present the result of a study of the X-ray emission from the Galactic Centre Molecular Clouds (MC), within 15 arcmin from Sgr A*. We use XMM-Newton data spanning about 8 years. We observe an apparent super-luminal motion of a light front illuminat ing a MC. This might be due to a source outside the MC (such as Sgr A* or a bright and long outburst of a X-ray binary), while it can not be due to low energy cosmic rays or a source located inside the cloud. We also observe a decrease of the X-ray emission from G0.11-0.11, behaviour similar to the one of Sgr B2. The line intensities, clouds dimensions, columns densities and positions with respect to Sgr A*, are consistent with being produced by the same Sgr A* flare. The required high luminosity (about 1.5 10^39 erg s-1) can hardly be produced by a binary system, while it is in agreement with a flare of Sgr A* fading about 100 years ago.
N49 (LHA 120-N49) is a bright X-ray supernova remnant (SNR) in the Large Magellanic Cloud. We present new $^{12}$CO($J$ = 1-0, 3-2), HI, and 1.4 GHz radio-continuum observations of the SNR N49 using Mopra, ASTE, ALMA, and ATCA. We have newly identifi ed three HI clouds using ATCA with an angular resolution of ~20: one associated with the SNR and the others located in front of the SNR. Both the CO and HI clouds in the velocity range from 280-291 km s$^{-1}$ are spatially correlated with both the soft X-rays (0.2-1.2 keV) and the hard X-rays (2.0-7.0 keV) of N49 on a ~10 pc scale. CO 3-2/1-0 intensity ratios indicate higher values of the CO cloud toward the SNR shell with an angular resolution of ~45, and thus a strong interaction was suggested. Using the ALMA, we have spatially resolved CO clumps embedded within or along the southeastern rim of N49 with an angular resolution of ~3. Three of the CO clumps are rim-brightened on a 0.7-2 pc scale in both hard X-rays and the radio continuum$:$ this provides further evidence for dynamical interactions between the CO clumps and the SNR shock wave. The enhancement of the radio synchrotron radiation can be understood in terms of magnetic-field amplification around the CO clumps via a shock-cloud interaction. We also present a possible scenario in which the recombining plasma that dominates the hard X-rays from N49 was formed via thermal conduction between the SNR shock waves and the cold$/$dense molecular clumps.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا