ترغب بنشر مسار تعليمي؟ اضغط هنا

Continuity of Topic, Interaction, and Query: Learning to Quote in Online Conversations

200   0   0.0 ( 0 )
 نشر من قبل Lingzhi Wang
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Quotations are crucial for successful explanations and persuasions in interpersonal communications. However, finding what to quote in a conversation is challenging for both humans and machines. This work studies automatic quotation generation in an online conversation and explores how language consistency affects whether a quotation fits the given context. Here, we capture the contextual consistency of a quotation in terms of latent topics, interactions with the dialogue history, and coherence to the query turns existing content. Further, an encoder-decoder neural framework is employed to continue the context with a quotation via language generation. Experiment results on two large-scale datasets in English and Chinese demonstrate that our quotation generation model outperforms the state-of-the-art models. Further analysis shows that topic, interaction, and query consistency are all helpful to learn how to quote in online conversations.



قيم البحث

اقرأ أيضاً

68 - Xavier Bost 2018
This paper deals with the automatic analysis of conversations between a customer and an agent in a call centre of a customer care service. The purpose of the analysis is to hypothesize themes about problems and complaints discussed in the conversatio n. Themes are defined by the application documentation topics. A conversation may contain mentions that are irrelevant for the application purpose and multiple themes whose mentions may be interleaved portions of a conversation that cannot be well defined. Two methods are proposed for multiple theme hypothesization. One of them is based on a cosine similarity measure using a bag of features extracted from the entire conversation. The other method introduces the concept of thematic density distributed around specific word positions in a conversation. In addition to automatically selected words, word bi-grams with possible gaps between successive words are also considered and selected. Experimental results show that the results obtained with the proposed methods outperform the results obtained with support vector machines on the same data. Furthermore, using the theme skeleton of a conversation from which thematic densities are derived, it will be possible to extract components of an automatic conversation report to be used for improving the service performance. Index Terms: multi-topic audio document classification, hu-man/human conversation analysis, speech analytics, distance bigrams
205 - X. Bost 2018
The paper deals with the automatic analysis of real-life telephone conversations between an agent and a customer of a customer care service (ccs). The application domain is the public transportation system in Paris and the purpose is to collect stati stics about customer problems in order to monitor the service and decide priorities on the intervention for improving user satisfaction. Of primary importance for the analysis is the detection of themes that are the object of customer problems. Themes are defined in the application requirements and are part of the application ontology that is implicit in the ccs documentation. Due to variety of customer population, the structure of conversations with an agent is unpredictable. A conversation may be about one or more themes. Theme mentions can be interleaved with mentions of facts that are irrelevant for the application purpose. Furthermore, in certain conversations theme mentions are localized in specific conversation segments while in other conversations mentions cannot be localized. As a consequence, approaches to feature extraction with and without mention localization are considered. Application domain relevant themes identified by an automatic procedure are expressed by specific sentences whose words are hypothesized by an automatic speech recognition (asr) system. The asr system is error prone. The word error rates can be very high for many reasons. Among them it is worth mentioning unpredictable background noise, speaker accent, and various types of speech disfluencies. As the application task requires the composition of proportions of theme mentions, a sequential decision strategy is introduced in this paper for performing a survey of the large amount of conversations made available in a given time period. The strategy has to sample the conversations to form a survey containing enough data analyzed with high accuracy so that proportions can be estimated with sufficient accuracy. Due to the unpredictable type of theme mentions, it is appropriate to consider methods for theme hypothesization based on global as well as local feature extraction. Two systems based on each type of feature extraction will be considered by the strategy. One of the four methods is novel. It is based on a new definition of density of theme mentions and on the localization of high density zones whose boundaries do not need to be precisely detected. The sequential decision strategy starts by grouping theme hypotheses into sets of different expected accuracy and coverage levels. For those sets for which accuracy can be improved with a consequent increase of coverage a new system with new features is introduced. Its execution is triggered only when specific preconditions are met on the hypotheses generated by the basic four systems. Experimental results are provided on a corpus collected in the call center of the Paris transportation system known as ratp. The results show that surveys with high accuracy and coverage can be composed with the proposed strategy and systems. This makes it possible to apply a previously published proportion estimation approach that takes into account hypothesization errors .
In recent years, world business in online discussions and opinion sharing on social media is booming. Re-entry prediction task is thus proposed to help people keep track of the discussions which they wish to continue. Nevertheless, existing works onl y focus on exploiting chatting history and context information, and ignore the potential useful learning signals underlying conversation data, such as conversation thread patterns and repeated engagement of target users, which help better understand the behavior of target users in conversations. In this paper, we propose three interesting and well-founded auxiliary tasks, namely, Spread Pattern, Repeated Target user, and Turn Authorship, as the self-supervised signals for re-entry prediction. These auxiliary tasks are trained together with the main task in a multi-task manner. Experimental results on two datasets newly collected from Twitter and Reddit show that our method outperforms the previous state-of-the-arts with fewer parameters and faster convergence. Extensive experiments and analysis show the effectiveness of our proposed models and also point out some key ideas in designing self-supervised tasks.
Online peer-to-peer support platforms enable conversations between millions of people who seek and provide mental health support. If successful, web-based mental health conversations could improve access to treatment and reduce the global disease bur den. Psychologists have repeatedly demonstrated that empathy, the ability to understand and feel the emotions and experiences of others, is a key component leading to positive outcomes in supportive conversations. However, recent studies have shown that highly empathic conversations are rare in online mental health platforms. In this paper, we work towards improving empathy in online mental health support conversations. We introduce a new task of empathic rewriting which aims to transform low-empathy conversational posts to higher empathy. Learning such transformations is challenging and requires a deep understanding of empathy while maintaining conversation quality through text fluency and specificity to the conversational context. Here we propose PARTNER, a deep reinforcement learning agent that learns to make sentence-level edits to posts in order to increase the expressed level of empathy while maintaining conversation quality. Our RL agent leverages a policy network, based on a transformer language model adapted from GPT-2, which performs the dual task of generating candidate empathic sentences and adding those sentences at appropriate positions. During training, we reward transformations that increase empathy in posts while maintaining text fluency, context specificity and diversity. Through a combination of automatic and human evaluation, we demonstrate that PARTNER successfully generates more empathic, specific, and diverse responses and outperforms NLP methods from related tasks like style transfer and empathic dialogue generation. Our work has direct implications for facilitating empathic conversations on web-based platforms.
71 - Nan Du , Mingqiu Wang , Linh Tran 2019
Recently we proposed the Span Attribute Tagging (SAT) Model (Du et al., 2019) to infer clinical entities (e.g., symptoms) and their properties (e.g., duration). It tackles the challenge of large label space and limited training data using a hierarchi cal two-stage approach that identifies the span of interest in a tagging step and assigns labels to the span in a classification step. We extend the SAT model to jointly infer not only entities and their properties but also relations between them. Most relation extraction models restrict inferring relations between tokens within a few neighboring sentences, mainly to avoid high computational complexity. In contrast, our proposed Relation-SAT (R-SAT) model is computationally efficient and can infer relations over the entire conversation, spanning an average duration of 10 minutes. We evaluate our model on a corpus of clinical conversations. When the entities are given, the R-SAT outperforms baselines in identifying relations between symptoms and their properties by about 32% (0.82 vs 0.62 F-score) and by about 50% (0.60 vs 0.41 F-score) on medications and their properties. On the more difficult task of jointly inferring entities and relations, the R-SAT model achieves a performance of 0.34 and 0.45 for symptoms and medications respectively, which is significantly better than 0.18 and 0.35 for the baseline model. The contributions of different components of the model are quantified using ablation analysis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا