ترغب بنشر مسار تعليمي؟ اضغط هنا

Angle-resolved photoemission spectroscopy and its application to topological materials

140   0   0.0 ( 0 )
 نشر من قبل Baiqing Lv
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Angle-resolved photoemission spectroscopy (ARPES), an experimental technique based on the photoelectric effect, is arguably the most powerful method for probing the electronic structure of solids. The past decade has witnessed notable progress in ARPES, including the rapid development of soft-X-ray ARPES, time-resolved ARPES, spin-resolved ARPES and spatially resolved ARPES, as well as considerable improvements in energy and momentum resolution. Consequently , ARPES has emerged as an indispensable experimental probe in the study of topological materials, which have characteristic non-trivial bulk and surface electronic structures that can be directly detected by ARPES. Over the past few years, ARPES has had a crucial role in several landmark discoveries in topological materials, including the identification of topological insulators and topological Dirac and Weyl semimetals. In this Technical Review , we assess the latest developments in different ARPES techniques and illustrate the capabilities of these techniques with applications in the study of topological materials.



قيم البحث

اقرأ أيضاً

We combined a spin-resolved photoemission spectrometer with a high-harmonic generation (HHG) laser source in order to perform spin-, time- and angle-resolved photoemission spectroscopy (STARPES) experiments on the transition metal dichalcogenide bulk WTe$_2$, a possible Weyl type-II semimetal. Measurements at different femtosecond pump-probe delays and comparison with spin-resolved one-step photoemission calculations provide insight into the spin polarization of electrons above the Fermi level in the region where Weyl points of WTe$_2$ are expected. We observe a spin accumulation above the Weyl points region, that is consistent with a spin-selective bottleneck effect due to the presence of spin polarized cone-like electronic structure. Our results support the feasibility of STARPES with HHG, which despite being experimentally challenging provides a unique way to study spin dynamics in photoemission.
We have carried out detailed high resolution ARPES measurements and band structure calculations to study the electronic structure of CaMnSb$_{2}$. The observed Fermi surface mainly consists of one hole pocket around ${Gamma}$ point and one tiny hole pocket at Y point. Strong spectral weight accumulation along the ${Gamma}$-X direction is observed on the hole-like Fermi surface around ${Gamma}$ point, suggesting strong anisotropy of the density of states along the Fermi surface. The tiny hole pocket at Y point originates from an anisotropic Dirac-like band with the crossing point of the linear bands lying $sim$ 10 meV above the Fermi level. These observations are in a good agreement with the band structure calculations. In addition, we observe additional features along the ${Gamma}$-Y line that cannot be accounted for by the band structure calculations. Our results provide important information in understanding and exploration of novel properties in CaMnSb$_{2}$ and related materials.
161 - Yihua Wang , Nuh Gedik 2012
Topological insulators are a new phase of matter that exhibits exotic surface electronic properties. Determining the spin texture of this class of material is of paramount importance for both fundamental understanding of its topological order and fut ure spin-based applications. In this article, we review the recent experimental and theoretical studies on the differential coupling of left- versus right-circularly polarized light to the topological surface states in angle-resolved photoemission spectroscopy. These studies have shown that the polarization of light and the experimental geometry plays a very important role in both photocurrent intensity and spin polarization of photoelectrons emitted from the topological surface states. A general photoemission matrix element calculation with spin-orbit coupling can quantitatively explain the observations and is also applicable to topologically trivial systems. These experimental and theoretical investigations suggest that optical excitation with circularly polarized light is a promising route towards mapping the spin-orbit texture and manipulating the spin orientation in topological and other spin-orbit coupled materials.
247 - C. Q. Han , M. Y. Yao , X. X. Bai 2014
Electronic structures of single crystalline black phosphorus were studied by state-of-art angleresolved photoemission spectroscopy. Through high resolution photon energy dependence measurements, the band dispersions along out-of-plane and in-plane di rections are experimentally determined. The electrons were found to be more localized in the ab-plane than that is predicted in calculations. Beside the kz-dispersive bulk bands, resonant surface state is also observed in the momentum space. Our finds strongly suggest that more details need to be considered to fully understand the electronic properties of black phosphorus theoretically.
The rhenium-based transition metal dichalcogenides (TMDs) are atypical of the TMD family due to their highly anisotropic crystalline structure and are recognized as promising materials for two dimensional heterostructure devices. The nature of the ba nd gap (direct or indirect) for bulk, few and single layer forms of ReS$_2$ is of particular interest, due to its comparatively weak inter-planar interaction. However, the degree of inter-layer interaction and the question of whether a transition from indirect to direct gap is observed on reducing thickness (as in other TMDs) are controversial. We present a direct determination of the valence band structure of bulk ReS$_2$ using high resolution angle resolved photoemission spectroscopy (ARPES). We find a clear in-plane anisotropy due to the presence of chains of Re atoms, with a strongly directional effective mass which is larger in the direction orthogonal to the Re chains (2.2 $m_e$) than along them (1.6 $m_e$), in good agreement with density functional theory calculations. An appreciable inter-plane interaction results in an experimentally-measured difference of ~100-200 meV between the valence band maxima at the Z point (0,0,1/2) and the $Gamma$ point (0,0,0) of the three-dimensional Brillouin zone. This leads to a direct gap at Z and a close-lying but larger gap at $Gamma$, implying that bulk ReS2 is marginally indirect. This may account for recent conflicting transport and photoluminescence measurements and the resulting uncertainty about the direct or indirect gap nature of this material.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا