ﻻ يوجد ملخص باللغة العربية
While ergodicity is a fundamental postulate of statistical mechanics and implies that driven interacting systems inevitably heat, ergodic dynamics can be disrupted by quantum interference. Despite a quarter-century of experimental studies, the effect of many-body interactions on the resulting dynamically localized state has remained unexplored. We report the experimental realization of a tunably-interacting kicked quantum rotor ensemble using a Bose-Einstein condensate in a pulsed optical lattice. We observe a prethermal localized plateau, which survives for hundreds of kicks, followed by interaction-induced anomalous diffusion. Echo-type time reversal experiments establish the role of interactions in destroying reversibility, and a mapping to kicked spin models illustrates connections to many-body dynamical localization in spin chains. These results demonstrate a dynamical transition to many-body quantum chaos, and illuminate and delimit possibilities for globally protecting quantum information in interacting driven quantum systems.
We provide evidence that a clean kicked Bose-Hubbard model exhibits a many-body dynamically localized phase. This phase shows ergodicity breaking up to the largest sizes we were able to consider. We argue that this property persists in the limit of l
The kicked rotor system is a textbook example of how classical and quantum dynamics can drastically differ. The energy of a classical particle confined to a ring and kicked periodically will increase linearly in time whereas in the quantum version th
We propose the implementation of a quantum heat pump with ultracold atoms. It is based on two periodically driven coherently coupled quantum dots using ultracold atoms. Each dot possesses two relevant quantum states and is coupled to a fermionic rese
We study the complex quantum dynamics of a system of many interacting atoms in an elongated anharmonic trap. The system is initially in a Bose-Einstein condensed state, well described by Thomas-Fermi profile in the elongated direction and the ground
We experimentally study the emergence of high-energy equilibrium states in a chiral vortex gas of like-circulation vortices realized within a disk-shaped atomic Bose-Einstein condensate. In contrast to the familiar triangular Abrikosov lattice, the l