ﻻ يوجد ملخص باللغة العربية
For a $k$-vertex graph $F$ and an $n$-vertex graph $G$, an $F$-tiling in $G$ is a collection of vertex-disjoint copies of $F$ in $G$. For $rin mathbb{N}$, the $r$-independence number of $G$, denoted $alpha_r(G)$ is the largest size of a $K_r$-free set of vertices in $G$. In this paper, we discuss Ramsey--Turan-type theorems for tilings where one is interested in minimum degree and independence number conditions (and the interaction between the two) that guarantee the existence of optimal $F$-tilings. For cliques, we show that for any $kgeq 3$ and $eta>0$, any graph $G$ on $n$ vertices with $delta(G)geq eta n$ and $alpha_k(G)=o(n)$ has a $K_k$-tiling covering all but $lfloortfrac{1}{eta}rfloor(k-1)$ vertices. All conditions in this result are tight; the number of vertices left uncovered can not be improved and for $eta<tfrac{1}{k}$, a condition of $alpha_{k-1}(G)=o(n)$ would not suffice. When $eta>tfrac{1}{k}$, we then show that $alpha_{k-1}(G)=o(n)$ does suffice, but not $alpha_{k-2}(G)=o(n)$. These results unify and generalise previous results of Balogh-Molla-Sharifzadeh, Nenadov-Pehova and Balogh-McDowell-Molla-Mycroft on the subject. We further explore the picture when $F$ is a tree or a cycle and discuss the effect of replacing the independence number condition with $alpha^*(G)=o(n)$ (meaning that any pair of disjoint linear sized sets induce an edge between them) where one can force perfect $F$-tilings covering all the vertices. Finally we discuss the consequences of these results in the randomly perturbed setting.
Combining two classical notions in extremal combinatorics, the study of Ramsey-Turan theory seeks to determine, for integers $mle n$ and $p leq q$, the number $mathsf{RT}_p(n,K_q,m)$, which is the maximum size of an $n$-vertex $K_q$-free graph in whi
We call a $4$-cycle in $K_{n_{1}, n_{2}, n_{3}}$ multipartite, denoted by $C_{4}^{text{multi}}$, if it contains at least one vertex in each part of $K_{n_{1}, n_{2}, n_{3}}$. The Turan number $text{ex}(K_{n_{1},n_{2},n_{3}}, C_{4}^{text{multi}})$ $bi
Given a class $mathcal{C}$ of graphs and a fixed graph $H$, the online Ramsey game for $H$ on $mathcal C$ is a game between two players Builder and Painter as follows: an unbounded set of vertices is given as an initial state, and on each turn Builde
We study Turan and Ramsey-type problems on edge-colored graphs. An edge-colored graph is called {em $varepsilon$-balanced} if each color class contains at least an $varepsilon$-proportion of its edges. Given a family $mathcal{F}$ of edge-colored grap
Analogues of Ramseys Theorem for infinite structures such as the rationals or the Rado graph have been known for some time. In this context, one looks for optimal bounds, called degrees, for the number of colors in an isomorphic substructure rather t