ترغب بنشر مسار تعليمي؟ اضغط هنا

Eikonal quasinormal modes of black holes beyond general relativity III: scalar Gauss-Bonnet gravity

193   0   0.0 ( 0 )
 نشر من قبل Albert Bryant
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In a recent series of papers we have shown how the eikonal/geometrical optics approximation can be used to calculate analytically the fundamental quasinormal mode frequencies associated with coupled systems of wave equations, which arise, for instance, in the study of perturbations of black holes in gravity theories beyond General Relativity. As a continuation to this series, we here focus on the quasinormal modes of nonrotating black holes in scalar Gauss-Bonnet gravity assuming a small-coupling expansion. We show that the axial perturbations are purely tensorial and are described by a modified Regge-Wheeler equation, while the polar perturbations are of mixed scalar-tensor character and are described by a system of two coupled wave equations. When applied to these equations, the eikonal machinery leads to axial modes that deviate from the general relativistic results at quadratic order in the Gauss-Bonnet coupling constant. We show that this result is in agreement with an analysis of unstable circular null orbits around blackholes in this theory, allowing us to establish the geometrical optics-null geodesic correspondence for the axial modes. For the polar modes the small-coupling approximation forces us to consider the ordering between eikonal and small-coupling perturbative parameters; one of which we show, by explicit comparison against numerical data, yields the correct identification of the quasinormal modes of the scalar-tensor coupled system of wave equations. These corrections lift the general relativistic degeneracy between scalar and tensorial eikonal quasinormal modes at quadratic order in Gauss-Bonnet coupling in a way reminiscent of the Zeeman effect. In general, our analytic, eikonal quasinormal mode frequencies (normalized to the General Relativity ones) agree with numerical results with an error of $sim 10%$ in the regime of small coupling constant. (abridged)



قيم البحث

اقرأ أيضاً

Black hole `spectroscopy, i.e. the identification of quasinormal mode frequencies via gravitational wave observations, is a powerful technique for testing the general relativistic nature of black holes. In theories of gravity beyond general relativit y perturbed black holes are typically described by a set of coupled wave equations for the tensorial field and the extra scalar/vector degrees of freedom, thus leading to a theory-specific quasinormal mode spectrum. In this paper we use the eikonal/geometric optics approximation to obtain analytic formulae for the frequency and damping rate of the fundamental quasinormal mode of a generalised, theory-agnostic system of equations describing coupled scalar-tensor perturbations of spherically symmetric black holes. Representing an extension of our recent work, the present model includes a massive scalar field, couplings through the field derivatives and first-order frame dragging rotational corrections. Moving away from spherical symmetry, we consider the simple model of the scalar wave equation in a general stationary-axisymmetric spacetime and use the eikonal approximation to compute the quasinormal modes associated with equatorial and nonequatorial photon rings.
In this brief report, we investigate the existence of 4-dimensional static spherically symmetric black holes (BHs) in the Einstein-complex-scalar-Gauss-Bonnet (EcsGB) gravity with an arbitrary potential $V(phi)$ and a coupling $f(phi)$ between the sc alar field $phi$ and the Gauss-Bonnet (GB) term. We find that static regular BH solutions with complex scalar hairs do not exist. This conclusion does not depend on the coupling between the GB term and the scalar field, nor on the scalar potential $V(phi)$ and the presence of a cosmological constant $Lambda$ (which can be either positive or negative), as longer as the scalar field remains complex and is regular across the horizon.
Einsteins General Relativity theory simplifies dramatically in the limit that the spacetime dimension D is very large. This could still be true in the gravity theory with higher derivative terms. In this paper, as the first step to study the gravity with a Gauss-Bonnet(GB) term, we compute the quasi-normal modes of the spherically symmetric GB black hole in the large D limit. When the GB parameter is small, we find that the non-decoupling modes are the same as the Schwarzschild case and the decoupled modes are slightly modified by the GB term. However, when the GB parameter is large, we find some novel features. We notice that there are another set of non-decoupling modes due to the appearance of a new plateau in the effective radial potential. Moreover, the effective radial potential for the decoupled vector-type and scalar-type modes becomes more complicated. Nevertheless we manage to compute the frequencies of the these decoupled modes analytically. When the GB parameter is neither very large nor very small, though analytic computation is not possible, the problem is much simplified in the large D expansion and could be numerically treated. We study numerically the vector-type quasinormal modes in this case.
81 - Enrico Barausse 2019
The recent detections of gravitational waves from binary systems of black holes are in remarkable agreement with the predictions of General Relativity. In this pedagogical mini-review, I will go through the physics of the different phases of the evol ution of black hole binary systems, providing a qualitative physical interpretation of each one of them. I will also briefly describe how these phases would be modified if gravitation were described by a theory extending or deforming General Relativity, or if the binary components turned out to be more exotic compact objects than black holes.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا