ترغب بنشر مسار تعليمي؟ اضغط هنا

ALMA discovery of a dual dense probably rotating outflow from a massive young stellar object G18.88MME

181   0   0.0 ( 0 )
 نشر من قبل Igor Zinchenko
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English
 تأليف I. I. Zinchenko




اسأل ChatGPT حول البحث

We report the discovery of a very dense jet-like fast molecular outflow surrounded by a wide-angle wind in a massive young stellar object (MYSO) G18.88MME (stellar mass $sim$8 M$_{odot}$) powering an Extended Green Object G18.89$-$0.47. Four cores MM1-4 are identified in the Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm continuum map (resolution $sim$0.$$8) toward G18.88MME, and are seen at the center of the emission structure (extent $sim$0.3 pc $times$ 0.2 pc) detected in the ALMA map. G18.88MME is embedded in the core MM1 (mass $sim$13-18 M$_{odot}$), where no radio continuum emission is detected. The molecular outflow centered at MM1 is investigated in the SiO(5-4), HC$_{3}$N(24-23) and $^{13}$CO(2-1) lines. The detection of HC$_{3}$N in the outflow is rare in MYSOs and indicates its very high density. The position-velocity diagrams display a fast narrow outflow (extent $sim$28000 AU) and a slower wide-angle more extended outflow toward MM1, and both of these components show a transverse velocity gradient indicative of a possible rotation. All these observed features together make G18.88MME as a unique object for studying the unification of the jet-driven and wind-driven scenarios of molecular outflows in MYSOs.

قيم البحث

اقرأ أيضاً

We present the results of multi-epoch very long baseline interferometry (VLBI) water (H2O) maser observations carried out with the VLBI Exploration of Radio Astrometry (VERA) toward the Cepheus A HW3d object. We measured for the first time relative p roper motions of the H2O maser features, whose spatio-kinematics traces a compact bipolar outflow. This outflow looks highly collimated and expanding through ~ 280 AU (400 mas) at a mean velocity of ~ 21 km/s (~ 6 mas/yr) without taking into account the turbulent central maser cluster. The opening angle of the outflow is estimated to be ~ 30{circ}. The dynamical time-scale of the outflow is estimated to be ~ 100 years. Our results provide strong support that HW3d harbors an internal massive young star, and the observed outflow could be tracing a very early phase of star formation. We also have analyzed Very Large Array (VLA) archive data of 1.3 cm continuum emission obtained in 1995 and 2006 toward Cepheus A. The comparative result of the HW3d continuum emission suggests the possibility of the existence of distinct young stellar objects (YSOs) in HW3d and/or strong variability in one of their radio continuum emission components.
107 - B. C. Matthews 2006
We investigate the structure of the core surrounding the recently identified deeply embedded young stellar object Barnard 1c which has an unusual polarization pattern as traced in submillimeter dust emission. Barnard 1c lies within the Perseus molecu lar cloud at a distance of 250 pc. It is a deeply embedded core of 2.4 solar masses (Kirk et al.) and a luminosity of 4 +/- 2 solar luminosities. Observations of CO, 13CO, C18O, HCO+ and N2H+ were obtained with the BIMA array, together with the continuum at 3.3 mm and 2.7 mm. Single-dish measurements of N2H+ and HCO+ with FCRAO reveal the larger scale emission in these lines, The CO and HCO+ emission traces the outflow, which coincides in detail with the S-shaped jet recently found in Spitzer IRAC imaging. The N2H+ emission, which anticorrelates spatially with the C18O emission, originates from a rotating envelope with effective radius ~ 2400 AU and mass 2.1 - 2.9 solar masses. N2H+ emission is absent from a 600 AU diameter region around the young star. The remaining N2H+ emission may lie in a coherent torus of dense material. With its outflow and rotating envelope, B1c closely resembles the previously studied object L483-mm, and we conclude that it is a protostar in an early stage of evolution. We hypothesize that heating by the outflow and star has desorbed CO from grains which has destroyed N2H+ in the inner region and surmise that the presence of grains without ice mantles in this warm inner region can explain the unusual polarization signature from B1c.
The Young Stellar Object (YSO) W33A is one of the best known examples of a massive star still in the process of forming. Here we present Gemini North ALTAIR/NIFS laser-guide star adaptive-optics assisted K-band integral-field spectroscopy of W33A and its inner reflection nebula. In our data we make the first detections of a rotationally-flattened outer envelope and fast bi-polar jet of a massive YSO at near-infrared wavelengths. The predominant spectral features observed are Br-gamma, H_2, and a combination of emission and absorption from CO gas. We perform a 3-D spectro-astrometric analysis of the line emission, the first study of its kind. We find that the objects Br-gamma emission reveals evidence for a fast bi-polar jet on sub-milliarcsecond scales, which is aligned with the larger-scale outflow. The hybrid CO features can be explained as a combination of hot CO emission arising in a disk close to the central star, while cold CO absorption originates in the cooler outer envelope. Kinematic analysis of these features reveals that both structures are rotating, and consistent with being aligned perpendicularly to both the ionised jet and the large-scale outflow. Assuming Keplerian rotation, we find that the circumstellar disk orbits a central mass of >10Msun, while the outer envelope encloses a mass of ~15Msun. Our results suggest a scenario of a central star accreting material from a circumstellar disk at the centre of a cool extended rotating torus, while driving a fast bi-polar wind. These results therefore provide strong supporting evidence for the hypothesis that the formation mechanism for high-mass stars is qualitatively similar to that of low-mass stars.
We report the results of VERA multi-epoch VLBI 22 GHz water maser observations of S255IR-SMA1, a massive young stellar object located in the S255 star forming region. By annual parallax the source distance was measured as D = 1.78 +-0.12 kpc and the source systemic motion was (u alpha cos d, u d) = (-0.13 +- 0.20, -0.06 +- 0.27) mas yr-1. Masers appear to trace a U-shaped bow shock whose morphology and proper motions are well reproduced by a jet-driven outflow model with a jet radius of about 6 AU. The maser data, in the context of other works in the literature, reveal ejections from S255IR-SMA1 to be episodic, operating on timescales of ~1000 years.
Previous radio observations revealed widespread gas-phase methanol (CH$_3$OH) in the Central Molecular Zone (CMZ) at the Galactic center (GC), but its origin remains unclear. Here, we report the discovery of CH$_3$OH ice toward a star in the CMZ, bas ed on a Subaru $3.4$-$4.0 mu$m spectrum, aided by NASA/IRTF $L$ imaging and $2$-$4 mu$m spectra. The star lies $sim8000$ au away in projection from a massive young stellar object (MYSO). Its observed high CH$_3$OH ice abundance ($17%pm3%$ relative to H$_2$O ice) suggests that the $3.535 mu$m CH$_3$OH ice absorption likely arises in the MYSOs extended envelope. However, it is also possible that CH$_3$OH ice forms with a higher abundance in dense clouds within the CMZ, compared to within the disk. Either way, our result implies that gas-phase CH$_3$OH in the CMZ can be largely produced by desorption from icy grains. The high solid CH$_3$OH abundance confirms the prominent $15.4 mu$m shoulder absorption observed toward GC MYSOs arises from CO$_2$ ice mixed with CH$_3$OH.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا