ﻻ يوجد ملخص باللغة العربية
RGB-D salient object detection(SOD) demonstrates its superiority on detecting in complex environments due to the additional depth information introduced in the data. Inevitably, an independent stream is introduced to extract features from depth images, leading to extra computation and parameters. This methodology which sacrifices the model size to improve the detection accuracy may impede the practical application of SOD problems. To tackle this dilemma, we propose a dynamic distillation method along with a lightweight framework, which significantly reduces the parameters. This method considers the factors of both teacher and student performance within the training stage and dynamically assigns the distillation weight instead of applying a fixed weight on the student model. Extensive experiments are conducted on five public datasets to demonstrate that our method can achieve competitive performance compared to 10 prior methods through a 78.2MB lightweight structure.
Existing RGB-D salient object detection (SOD) approaches concentrate on the cross-modal fusion between the RGB stream and the depth stream. They do not deeply explore the effect of the depth map itself. In this work, we design a single stream network
The main purpose of RGB-D salient object detection (SOD) is how to better integrate and utilize cross-modal fusion information. In this paper, we explore these issues from a new perspective. We integrate the features of different modalities through d
Conventional RGB-D salient object detection methods aim to leverage depth as complementary information to find the salient regions in both modalities. However, the salient object detection results heavily rely on the quality of captured depth data wh
Multi-level feature fusion is a fundamental topic in computer vision. It has been exploited to detect, segment and classify objects at various scales. When multi-level features meet multi-modal cues, the optimal feature aggregation and multi-modal le
The high computational cost of neural networks has prevented recent successes in RGB-D salient object detection (SOD) from benefiting real-world applications. Hence, this paper introduces a novel network, methodname, which focuses on efficient RGB-D