ﻻ يوجد ملخص باللغة العربية
Grain boundaries have been shown to dramatically influence the behavior of relatively simple materials such as monatomic metals and binary alloys. The increased chemical complexity associated with multi-principal element alloys is hypothesized to lead to new grain boundary phenomena. To explore the relationship between grain boundary structure and chemistry in these materials, hybrid molecular dynamics/Monte Carlo simulations of a faceted {Sigma}11 <110> tilt boundary, chosen to sample both high- and low-energy boundary configurations, are performed in face-centered cubic CrFeCoNiCu and CrFeCoNi equiatomic alloys. Unexpected enrichment of Fe is discovered in the face-centered cubic regions adjacent to the interface and found to be correlated with a structurally-distinct region of reduced atomic volume. Comparison with the boundary of the same type in monatomic Cu demonstrates that altered near-boundary regions exist in simpler systems as well, with the chemical complexity of the multi-principal element alloys highlighting its existence and importance.
Atomistic simulations can provide useful insights into the physical properties of multi-principal-element alloys. However, classical potentials mostly fail to capture key quantum (electronic-structure) effects. We present a deep 3D convolutional neur
The recently developed refractory multi-principle element alloy (MPEA), AlMo$_{0.5}$NbTa$_{0.5}$TiZr, shows an interesting microstructure with cuboidal precipitates of a disordered phase (${beta}$, bcc) coherently embedded in an ordered phase (${beta
By means of ab initio calculations within the density functional theory, we have found that B80 fullerenes can condense to form stable face-centered-cubic fcc solids. It is shown that when forming a crystal, B80 cages are geometrically distorted, the
Mg grain boundary (GB) segregation and GB diffusion can impact the processing and properties of Al-Mg alloys. Yet, Mg GB diffusion in Al has not been measured experimentally or predicted by simulations. We apply atomistic computer simulations to pred
While it is known that alloy components can segregate to grain boundaries (GBs), and that the atomic mobility in GBs greatly exceeds the atomic mobility in the lattice, little is known about the effect of GB segregation on GB diffusion. Atomistic com