ترغب بنشر مسار تعليمي؟ اضغط هنا

Comparison of the ion-to-electron temperature ratio prescription: GRMHD simulations with electron thermodynamics

140   0   0.0 ( 0 )
 نشر من قبل Yosuke Mizuno
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Event Horizon Telescope (EHT) collaboration, an Earth-size sub-millimetre radio interferometer, recently captured the first images of the central supermassive black hole in M87. These images were interpreted as gravitationally-lensed synchrotron emission from hot plasma orbiting around the black hole. In the accretion flows around low-luminosity active galactic nuclei such as M87, electrons and ions are not in thermal equilibrium. Therefore, the electron temperature, which is important for the thermal synchrotron radiation at EHT frequencies of 230 GHz, is not independently determined. In this work, we investigate the commonly used parameterised ion-to-electron temperature ratio prescription, the so-called R-$beta$ model, considering images at 230 GHz by comparing with electron-heating prescriptions obtained from general-relativistic magnetohydrodynamical (GRMHD) simulations of magnetised accretion flows in a Magnetically Arrested Disc (MAD) regime with different recipes for the electron thermodynamics. When comparing images at 230 GHz, we find a very good match between images produced with the R-$beta$ prescription and those produced with the turbulent- and magnetic reconnection- heating prescriptions. Indeed, this match is on average even better than that obtained when comparing the set of images built with the R-$beta$ prescription with either a randomly chosen image or with a time-averaged one. From this comparative study of different physical aspects, which include the image, visibilities, broadband spectra, and light curves, we conclude that, within the context of images at 230 GHz relative to MAD accretion flows around supermassive black holes, the commonly-used and simple R-$beta$ model is able to reproduce well the various and more complex electron-heating prescriptions considered here.

قيم البحث

اقرأ أيضاً

Astrophysical shocks are often collisionless shocks. An open question about collisionless shocks is whether electrons and ions each establish their own post-shock temperature, or whether they quickly equilibrate in the shock region. Here we provide s imple relations for the minimal amount of equilibration to expect. The basic assumption is that the enthalpy-flux of the electrons is conserved separately, but that all particle species should undergo the same density jump across the the shock. This assumption results in an analytic treatment of electron-ion equilibration that agrees with observations of collisionless shocks: at low Mach numbers ($<2$) the electrons and ions are close to equilibration, whereas for Mach numbers above $M sim 60$ the electron-ion temperature ratio scales with the particle masses $T_e/T_i = m_e/m_i$. In between these two extremes the electron-ion temperature ratio scales as $T_e/T_i propto 1/M_s^2$. This relation also hold if adiabatic compression of the electrons is taken into account. For magnetised plasmas the compression is governed by the magnetosonic Mach number, whereas the electron-ion temperatures are governed by the sonic Mach number. The derived equations are in agreement with observational data at low Mach numbers, but for supernova remnants the relation requires that the inferred Mach numbers for the observations are over- estimated, perhaps as a result of upstream heating in the cosmic-ray precursor. In addition to predicting a minimal electron/ion temperature ratio, we also heuristically incorporate ion-electron heat exchange at the shock, quantified with a dimensionless parameter ${xi}$. Comparing the model to existing observations in the solar system and supernova remnants suggests that the data are best described by ${xi} sim 5$ percent. (Abridged abstract.)
One of the main dissipation processes acting on all scales in relativistic jets is thought to be governed by magnetic reconnection. Such dissipation processes have been studied in idealized environments, such as reconnection layers, which evolve in m erging islands and lead to the production of plasmoids, ultimately resulting in efficient particle acceleration. In accretion flows onto black holes, reconnection layers can be developed and destroyed rapidly during the turbulent evolution of the flow. We present a series of two-dimensional general-relativistic magnetohydrodynamic simulations of tori accreting onto rotating black holes focusing our attention on the formation and evolution of current sheets. Initially, the tori are endowed with a poloidal magnetic field having a multi-loop structure along the radial direction and with an alternating polarity. During reconnection processes, plasmoids and plasmoid chains are developed leading to a flaring activity and hence to a variable electromagnetic luminosity. We describe the methods developed to track automatically the plasmoids that are generated and ejected during the simulation, contrasting the behaviour of multi-loop initial data with that encountered in typical simulations of accreting black holes having initial dipolar field composed of one loop only. Finally, we discuss the implications that our results have on the variability to be expected in accreting supermassive black holes.
79 - A.Ivanchik 2002
The possible cosmological variation of the proton-to-electron mass ratio was estimated by measuring the H_2 wavelengths in the high-resolution spectrum of the quasar Q~0347-382. Our analysis yielded an estimate for the possible deviation of mu value in the past, 10 Gyr ago: for the unweighted value $Delta mu / mu = (3.0pm2.4)times10^{-5}$; for the weighted value [ Delta mu / mu = (5.02pm1.82)times10^{-5}] Since the significance of the both results does not exceed 3$sigma$, further observations are needed to increase the statistical significance. In any case, this result may be considered as the most stringent estimate on an upper limit of a possible variation of mu (95% C.L.): [ |Delta mu / mu| < 8times 10^{-5} ] This value serves as an effective tool for selection of models determining a relation between possible cosmological deviations of the fine-structure constant alpha and the elementary particle masses (m$_p$, m$_e$, etc.).
Large-scale two-dimensional (2D) full particle-in-cell simulations are carried out for studying the relationship between the dynamics of a perpendicular shock and microinstabilities generated at the shock foot. The structure and dynamics of collision less shocks are generally determined by Alfven Mach number and plasma beta, while microinstabilities at the shock foot are controlled by the ratio of the upstream bulk velocity to the electron thermal velocity and the ratio of the plasma-to-cyclotron frequency. With a fixed Alfven Mach number and plasma beta, the ratio of the upstream bulk velocity to the electron thermal velocity is given as a function of the ion-to-electron mass ratio. The present 2D full PIC simulations with a relatively low Alfven Mach number (M_A ~ 6) show that the modified two-stream instability is dominant with higher ion-to-electron mass ratios. It is also confirmed that waves propagating downstream are more enhanced at the shock foot near the shock ramp as the mass ratio becomes higher. The result suggests that these waves play a role in the modification of the dynamics of collisionless shocks through the interaction with shock front ripples.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا