ترغب بنشر مسار تعليمي؟ اضغط هنا

Extraordinary $pi$-Electron Superconductivity Emerging from a Quantum Spin Liquid

167   0   0.0 ( 0 )
 نشر من قبل Shusaku Imajo
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum spin liquids (QSLs), in which spins are highly entangled, have been considered a groundwork for generating exotic superconductivity.Despite numerous efforts, superconductivity emerging from QSLs has been unrealized in actual materials due to the difficulties in stabilizing QSL states with metallic conductivity.Recently, an organic compound, $kappa$-(BEDT-TTF)$_4$Hg$_{2.89}$Br$_8$, with a nearly regular triangular lattice of molecular dimers was recognized as a candidate for doped QSLs. In this study, we report an unusual superconducting phase of $kappa$-(BEDT-TTF)$_4$Hg$_{2.89}$Br$_8$: unexpectedly large ratios of the upper critical field to the critical temperature $H_{rm c2}$/$T_{rm c}$ in fields not only parallel but also perpendicular to the two-dimensional conducting layers and a very wide region of fluctuating superconductivity above $T_{rm c}$.Our results reveal that these peculiarities arise from strong electron correlations and possible quantum criticality unique to the doped QSL state, leading to a heavy mass of itinerant carriers and a large superconducting energy gap.



قيم البحث

اقرأ أيضاً

The asymmetry between electron and hole doping remains one of the central issues in high-temperature cuprate superconductivity, but our understanding of the electron-doped cuprates has been hampered by apparent discrepancies between the only two know n families: Re2-xCexCuO4 and A1-xLaxCuO2. Here we report in situ angle-resolved photoemission spectroscopy measurements of epitaxially-stabilized films of Sr1-xLaxCuO2 synthesized by oxide molecular-beam epitaxy. Our results reveal a strong coupling between electrons and (pi,pi) antiferromagnetism that induces a Fermi surface reconstruction which pushes the nodal states below the Fermi level. This removes the hole pocket near (pi/2,pi/2), realizing nodeless superconductivity without requiring a change in the symmetry of the order parameter and providing a universal understanding of all electron-doped cuprates.
Beyond the conventional electron pairing mediated by phonons, high-temperature superconductivity in cuprates is believed to stem from quantum spin liquid (QSL). The unconventional superconductivity by doping a spin liquid/Mott insulator, is a long-so ught goal but a principal challenge in condensed matter physics because of the lack of an ideal QSL platform. Here we report the pressure induced metallization and possible unconventional superconductivity in $NaYbSe_{2}$, which belongs to a large and ideal family of triangular lattice spin liquid we revealed recently and is evidenced to possess a QSL ground state. The charge gap of NaYbSe2 is gradually reduced by applying pressures, and at ~20 GPa the crystal jumps into a superconducting (SC) phase with Tc ~ 5.8 K even before the insulating gap is completely closed. The metallization is confirmed by further high-pressure experiments but the sign of superconductivity is not well repeated. No symmetry breaking accompanies the SC transition, as indicated by X-ray diffraction and low-temperature Raman experiments under high pressures. This intrinsically connects QSL and SC phases, and suggests an unconventional superconductivity developed from QSL. We further observed the magnetic-field-tuned superconductor-insulator transition which is analogous to that found in the underdoped cuprate superconductor $La_{2-x}Sr_{x}CuO_{4}$. The study is expected to inspire interest in exploring new types of superconductors and sheds light into the intriguing physics from a spin liquid/Mott insulator to a superconductor.
131 - V. Grinenko , R. Sarkar , K. Kihou 2018
In general, magnetism and superconductivity are antagonistic to each other. However, there are several families of superconductors, in which superconductivity may coexist with magnetism, and only a few examples are known, when superconductivity itsel f induces spontaneous magnetism. The most known compounds are Sr$_2$RuO$_4$ and some noncentrosymmetric superconductors. Here, we report the finding of a narrow dome of a novel $s+is$ superconducting (SC) phase with broken time-reversal symmetry (BTRS) inside the broad $s$-wave SC region of the centrosymmetric multiband superconductor Ba$_{rm 1-x}$K$_{rm x}$Fe$_2$As$_2$ ($0.7 lesssim x lesssim 0.85$). We observe spontaneous magnetic fields inside this dome using the muon spin relaxation ($mu$SR) technique. Furthermore, our detailed specific heat study reveals that the BTRS dome appears very close to a change in the topology of the Fermi surface (Lifshitz transition). With this, we experimentally demonstrate the emergence of a novel quantum state due to topological changes of the electronic system.
345 - P. P. Kong , F. Sun , L.Y. Xing 2014
Recently, A2B3 type strong spin orbital coupling compounds such as Bi2Te3, Bi2Se3 and Sb2Te3 were theoretically predicated to be topological insulators and demonstrated through experimental efforts. The counterpart compound Sb2Se3 on the other hand w as found to be topological trivial, but further theoretical studies indicated that the pressure might induce Sb2Se3 into a topological nontrivial state. Here, we report on the discovery of superconductivity in Sb2Se3 single crystal induced via pressure. Our experiments indicated that Sb2Se3 became superconductive at high pressures above 10 GPa proceeded by a pressure induced insulator to metal like transition at ~3 GPa which should be related to the topological quantum transition. The superconducting transition temperature (TC) increased to around 8.0 K with pressure up to 40 GPa while it keeps ambient structure. High pressure Raman revealed that new modes appeared around 10 GPa and 20 GPa, respectively, which correspond to occurrence of superconductivity and to the change of TC slop as the function of high pressure in conjunction with the evolutions of structural parameters at high pressures.
69 - H. Jang , S. Asano , M. Fujita 2017
One of the central questions in the cuprate research is the nature of the normal state which develops into high temperature superconductivity (HTSC). In the normal state of hole-doped cuprates, the existence of charge density wave (CDW) is expected t o shed light on the mechanism of HTSC. With evidence emerging for CDW order in the electron-doped cuprates, the CDW would be thought to be a universal phenomenon in high-$T_c$ cuprates. However, the CDW phenomena in electron-doped cuprate are quite different than those in hole-doped cuprates. Here we study the nature of the putative CDW in an electron-doped cuprate through direct comparisons between as-grown and post-annealed Nd$_{1.86}$Ce$_{0.14}$CuO$_4$ (NCCO) single crystals using Cu $L_3$-edge resonant soft x-ray scattering (RSXS) and angle resolved photoemission spectroscopy (ARPES). The RSXS result reveals that the non-superconducting NCCO shows the same reflections at the wavevector (~1/4, 0, $l$) as like the reported superconducting NCCO. This superconductivity-insensitive signal is quite different with the characteristics of the CDW reflection in hole-doped cuprates. Moreover, the ARPES result suggests that the fermiology cannot account for such wavevector. These results call into question the universality of CDW phenomenon in the cuprates.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا