ترغب بنشر مسار تعليمي؟ اضغط هنا

Separated and complete adelic models for one-dimensional Noetherian tensor-triangulated categories

105   0   0.0 ( 0 )
 نشر من قبل John Greenlees
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We prove the existence of various adelic-style models for rigidly small-generated tensor-triangulated categories whose Balmer spectrum is a one-dimensional Noetherian topological space. This special case of our general programme of giving adelic models is particularly concrete and accessible, and we illustrate it with examples from algebra, geometry, topology and representation theory.



قيم البحث

اقرأ أيضاً

We show that a well behaved Noetherian, finite dimensional, stable, monoidal model category is equivalent to a model built from categories of modules over completed rings in an adelic fashion. For abelian groups this is based on the Hasse square, f or chromatic homotopy theory this is based on the chromatic fracture square, and for rational torus-equivariant homotopy theory this is the model of Greenlees-Shipley arXiv:1101.2511.
Given a suitable stable monoidal model category $mathscr{C}$ and a specialization closed subset $V$ of its Balmer spectrum one can produce a Tate square for decomposing objects into the part supported over $V$ and the part supported over $V^c$ splice d with the Tate object. Using this one can show that $mathscr{C}$ is Quillen equivalent to a model built from the data of local torsion objects, and the splicing data lies in a rather rich category. As an application, we promote the torsion model for the homotopy category of rational circle-equivariant spectra from [18] to a Quillen equivalence. In addition, a close analysis of the one step case highlights important features needed for general torsion models which we will return to in future work.
116 - Xiaoyan Yang 2020
The goal of the article is to better understand cosupport in triangulated categories since it is still quite mysterious. We study boundedness of local cohomology and local homology functors using Koszul objects, give some characterizations of cosuppo rt and get some results that, in special cases, recover and generalize the known results about the usual cosupport. Also we include some computations of cosupport, settle the comparison of support and cosupport of cohomologically finite objects. Finally, we assign to any object of the category a subset of $mathrm{Spec}R$, called the big cosupport.
Given a bounded-above cochain complex of modules over a ring, it is standard to replace it by a projective resolution, and it is classical that doing so can be very useful. Recently, a modified version of this was introduced in triangulated categor ies other than the derived category of a ring. A triangulated category is emph{approximable} if this modified procedure is possible. Not surprisingly this has proved a powerful tool. For example: the fact that the derived category of a quasi compact, separated scheme is approximable has led to major improvements on old theorems due to Bondal, Van den Bergh and Rouquier. In this article we prove that, under weak hypotheses, the recollement of two approximable triangulated categories is approximable. In particular, this shows many of the triangulated categories that arise in noncommutative algebraic geometry are approximable.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا