ترغب بنشر مسار تعليمي؟ اضغط هنا

ASASSN-14lp: two possible solutions for the observed UV suppression

65   0   0.0 ( 0 )
 نشر من قبل Barnabas Barna
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We test the adequacy of ultraviolet (UV) spectra for characterizing the outer structure of Type Ia supernova (SN) ejecta. For this purpose, we perform spectroscopic analysis for ASASSN-14lp, a normal SN Ia showing low continuum in the mid-UV regime. To explain the strong UV suppression, two possible origins have been investigated by mapping the chemical profiles over a significant part of their ejecta. We fit the spectral time series with mid-UV coverage obtained before and around maximum light by HST, supplemented with ground-based optical observations for the earliest epochs. The synthetic spectra are calculated with the one dimensional MC radiative-transfer code TARDIS from self-consistent ejecta models. Among several physical parameters, we constrain the abundance profiles of nine chemical elements. We find that a distribution of $^{56}$Ni (and other iron-group elements) that extends toward the highest velocities reproduces the observed UV flux well. The presence of radioactive material in the outer layers of the ejecta, if confirmed, implies strong constraints on the possible explosion scenarios. We investigate the impact of the inferred $^{56}$Ni distribution on the early light curves with the radiative transfer code TURTLS, and confront the results with the observed light curves of ASASSN-14lp. The inferred abundances are not in conflict with the observed photometry. We also test whether the UV suppression can be reproduced if the radiation at the photosphere is significantly lower in the UV regime than the pure Planck function. In this case, solar metallicity might be sufficient enough at the highest velocities to reproduce the UV suppression.



قيم البحث

اقرأ أيضاً

Some transients, although classified as novae based on their maximum and early decline optical spectra, cast doubts on their true nature and whether nova impostors might exist. We monitored a candidate nova which displayed a distinctly unusual light curve at maximum and early decline through optical spectroscopy (3000-10000 AA, 500<R<100000) complemented with Swift UV and AAVSO optical photometry. We use the spectral line series to characterize the ejecta dynamics, structure, and mass. We found that the ejecta are in free ballistic expansion and structured as typical of classical novae. However, their derived mass is at least an order of magnitude larger than the typical ejecta masses obtained for classical novae. Specifically, we found M$_{ej}simeq$9$times$10$^{-3}$ M$_odot$ independent of the distance for a filling factor $varepsilon$=1. By constraining the distance we derived $varepsilon$ in the range 0.08-0.10, giving a mass 7$times$10$^{-4}lesssim$ M$_{ej}lesssim$9$times$10$^{-4}$ M$_odot$. The nebular spectrum, characterized by unusually strong coronal emission lines, confines the ionizing source energy to the range 20-250 eV, possibly peaking in the range 75-100 or 75-150 eV. We link this source to other slow novae which showed similar behavior and suggest that they might form a distinct physical sub-group. They may result from a classical nova explosion occurring on a very low mass white dwarf or be impostors for an entirely different type of transient.
ASASSN-14ko is a recently discovered periodically flaring transient at the center of the AGN ESO 253-G003 with a slowly decreasing period. Here we show that the flares originate from the northern, brighter nucleus in this dual-AGN, post-merger system . The light curves for the two flares that occurred in May 2020 and September 2020 are nearly identical over all wavelengths. For both events, Swift observations showed that the UV and optical wavelengths brightened in unison. The effective temperature of the UV/optical emission rises and falls with the increase and subsequent decline in the luminosity. The X-ray flux, in contrast, first rapidly drops over $sim$2.6 days, rises for $sim$5.8 days, drops again over $sim$4.3 days and then recovers. The X-ray spectral evolution of the two flares differ, however. During the May 2020 peak the spectrum softened with increases in the X-ray luminosity, while we observed the reverse for the September 2020 peak.
We report spectroscopy and photometry of the cataclysmic variable stars ASASSN-14ho and V1062 Cyg. Both are dwarf novae with spectra dominated by their secondary stars, which we classify as approxomately K4 and M0.5, respectively. Their orbital perio ds, determined mostly from the secondary stars radial velociites, proved to be nearly identical, respectively 350.14 +- 0.15 and 348.25 +- 0.60 min. The H-alpha emission line in V1062 Cyg displays a relatively sharp emission component that tracks the secondarys motion, which may arise on the irradiated face of the secondary; tihs is not often seen and may indicate an unusually strong flux of ionizing radiation. Both systems exhibit double-peaked orbital modulation consistent with ellipsoidal variation from the changing aspect of the secondary. We model these variations to constrain the orbital inclination i, and estimate approximate component masses based oni and the secondary velocity amplitude K2.
The goal of this paper is to study the smallest brightening events observed in the EUV quiet Sun. We use commissioning data taken by the EUI instrument onboard the recently launched Solar Orbiter mission. On 2020 May 30, EUI was situated at 0.556AU f rom the Sun. Its HRIEUV telescope 17.4nm passband reached an exceptionally high two-pixel spatial resolution of 400km. The size and duration of small-scale structures is determined in the HRIEUV data, while their height is estimated from triangulation with the simultaneous SDO/AIA data. This is the first stereoscopy of small scale brightenings at high resolution. We observed small localised brightenings (campfires) in a quiet Sun region with lengthscales between 400km and 4000km and durations between 10 and 200s. The smallest and weakest of these HRIEUV brightenings have not been observed before. Simultaneous HRILYA observations do not show localised brightening events, but the locations of the HRIEUV events correspond clearly to the chromospheric network. Comparison with simultaneous AIA images shows that most events can also be identified in the 17.1nm, 19.3nm, 21.1nm, and 30.4nm passbands of AIA, although they appear weaker and blurred. DEM analysis indicates coronal temperatures peaking at log(T)~6.1-6.15. We determined the height of a few campfires, which is between 1000 and 5000km above the photosphere. We conclude that campfires are mostly coronal in nature and are rooted in the magnetic flux concentrations of the chromospheric network. We interpret these events as a new extension to the flare/microflare/nanoflare family. Given their low height, the EUI campfires could be a new element of the fine structure of the transition region/low corona: apexes of small-scale loops that are internally heated to coronal temperatures.
On 2014 Dec. 9.61, the All-Sky Automated Survey for SuperNovae (ASAS-SN or Assassin) discovered ASASSN-14lp just $sim2$ days after first light using a global array of 14-cm diameter telescopes. ASASSN-14lp went on to become a bright supernova ($V = 1 1.94$ mag), second only to SN 2014J for the year. We present prediscovery photometry (with a detection less than a day after first light) and ultraviolet through near-infrared photometric and spectroscopic data covering the rise and fall of ASASSN-14lp for more than 100 days. We find that ASASSN-14lp had a broad light curve ($Delta m_{15}(B) = 0.80 pm 0.05$), a $B$-band maximum at $2457015.82 pm 0.03$, a rise time of $16.94^{+ 0.11 }_{- 0.10 }$ days, and moderate host--galaxy extinction ($E(B-V)_{textrm{host}} = 0.33 pm 0.06$). Using ASASSN-14lp we derive a distance modulus for NGC 4666 of $mu = 30.8 pm 0.2$ corresponding to a distance of $14.7 pm 1.5$ Mpc. However, adding ASASSN-14lp to the calibrating sample of Type Ia supernovae still requires an independent distance to the host galaxy. Finally, using our early-time photometric and spectroscopic observations, we rule out red giant secondaries and, assuming a favorable viewing angle and explosion time, any non-degenerate companion larger than $0.34 R_{textrm{sun}}$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا