ﻻ يوجد ملخص باللغة العربية
In this paper, a diffuse-interface lattice Boltzmann method (DI-LBM) is developed for fluid-particle interaction problems. In this method, the sharp interface between the fluid and solid is replaced by a thin but nonzero thickness transition region named diffuse interface, where the physical variables varies continuously. In order to describe the diffuse interface, we introduce a smooth function, which is similar to the order parameter in phase-field model or the volume fraction of solid phase in the partially saturated lattice Boltzmann method (PS-LBM). In addition, to depict the fluid-particle interaction more accurately, a modified force term is also proposed and included in the evolution equation of the DI-LBM. Some classical problems are used to test the DI-LBM, and the results are in good agreement with some available theoretical and numerical works. Finally, it is also found that the DI-LBM is more efficient and accurate than the PS-LBM with the superposition model.
We present a novel method for fluid structure interaction (FSI) simulations where an original 2nd-order curved space lattice Boltzmann fluid solver (LBM) is coupled to a finite element method (FEM) for thin shells. The LBM can work independently on a
We propose a novel approach to the numerical simulation of thin film flows, based on the lattice Boltzmann method. We outline the basic features of the method, show in which limits the expected thin film equations are recovered and perform validation
An Onsager-like relation is proposed as a new criterion for constructing and analysing the lattice Boltzmann (LB) method. For LB models obeying the relation, we analyse their linearized stability, establish their diffusive limit, and find new constra
In this paper, we develop a simplified hybrid weighted essentially non-oscillatory (WENO) method combined with the modified ghost fluid method (MGFM) [28] to simulate the compressible two-medium flow problems. The MGFM can turn the two-medium flow pr
In this paper, we first present a unified framework for the modelling of generalized lattice Boltzmann method (GLBM). We then conduct a comparison of the four popular analysis methods (Chapman-Enskog analysis, Maxwell iteration, direct Taylor expansi