ﻻ يوجد ملخص باللغة العربية
Using first-principles calculations and group-theoretical methods, we study the origin and stabilization of ferrielectricity (FiE) in CuInP$_2$Se$_6$. We find that the polar distortions of the metal atoms create most of the polarization in the FiE phase. Surprisingly, the stabilization of the FiE phase comes from an anharmonic coupling between the polar mode and a fully symmetric Raman-active mode comprising primarily of the Se atoms. This coupling is large even down to the monolayer limit, and the degree of anharmonicity is comparable to improper ferroelectrics. Our results open up possibilities for dynamical control of the single-step ferroelectric switching barrier by tuning the Raman-active mode. These findings have important implications not only for designing next-generation microelectronic devices that can overcome the voltage-time dilemma but also in explaining the unconventional responses observed in CuInP$_2$Se$_6$ and similar layered thiophosphates.
Using Landau-Ginsburg-Devonshire approach and available experimental results we reconstruct the thermodynamic potential of the layered ferroelectric CuInP$_2$S$_6$ (CIPS), which is expected to be applicable a wide range of temperatures and applied pr
Layered multi-ferroic materials exhibit a variety of functional properties that can be tuned by varying the temperature and pressure. As-synthesized CuInP$_2$S$_6$ is a layered material that displays ferrielectric behavior at room temperature. When s
The dipole ordering in Sn(Pb)$_2$P$_2$S(Se)$_6$ materials may be tuned by chemical substitution realizing a ferroelectric quantum phase transition and quantum glassy or relaxor type phenomena on different parts of the phase diagram. The introduction
While it was speculated that 5$d^4$ systems would possess non-magnetic $J$~=~0 ground state due to strong Spin-Orbit Coupling (SOC), all such systems have invariably shown presence of magnetic moments so far. A puzzling case is that of Ba$_2$YIrO$_6$
By using solid-state reactions, we successfully synthesize new oxyselenides CsV$_2$Se$_{2-x}$O (x = 0, 0.5). These compounds containing V$_2$O planar layers with a square lattice crystallize in the CeCr$_2$Si$_2$C structure with the space group of $P