ﻻ يوجد ملخص باللغة العربية
We consider supersymmetric domain walls of four-dimensional $mathcal{N}!=!1$ $Sp(N)$ SQCD with $F!=!N+1$ and $F!=!N+2$ flavors. First, we study numerically the differential equations defining the walls, classifying the solutions. When $F!=!N+2$, in the special case of the parity-invariant walls, the naive analysis does not provide all the expected solutions. We show that an infinitesimal deformation of the differential equations sheds some light on this issue. Second, we discuss the $3d$ $mathcal{N}!=!1$ Chern-Simons-matter theories that should describe the effective dynamics on the walls. These proposals pass various tests, including dualities and matching of the vacua of the massive $3d$ theory with the $4d$ analysis. However, for $F!=!N+2$, the semiclassical analysis of the vacua is only partially successful, suggesting that yet-to-be-understood strong coupling phenomena are into play in our $3d$ $mathcal{N}!=!1$ gauge theories.
We study supersymmetric domain walls of four dimensional $SU(N)$ SQCD with $N$ and $N+1$ flavors. In $4d$ we analyze the BPS differential equations numerically. In $3d$ we propose the $mathcal{N}=1$ Chern-Simons-Matter gauge theories living on the wa
We study the worldvolume dynamics of BPS domain walls in N=1 SQCD with N_f=N flavors, and exhibit an enhancement of supersymmetry for the reduced moduli space associated with broken flavor symmetries. We provide an explicit construction of the worldv
We study vacua and walls of mass-deformed Kahler nonlinear sigma models on $Sp(N)/U(N)$. We identify elementary walls with the simple roots of $USp(2N)$ and discuss compressed walls, penetrable walls and multiwalls by using the moduli matrix formalism.
We study the multiplicity of BPS domain walls in N=1 super Yang-Mills theory, by passing to a weakly coupled Higgs phase through the addition of fundamental matter. The number of domain walls connecting two specified vacuum states is then determined
Coincident D3-branes placed at a conical singularity are related to string theory on $AdS_5times X_5$, for a suitable five-dimensional Einstein manifold $X_5$. For the example of the conifold, which leads to $X_5=T^{1,1}=(SU(2)times SU(2))/U(1)$, the