ﻻ يوجد ملخص باللغة العربية
In this paper, we combined linguistic complexity and (dis)fluency features with pretrained language models for the task of Alzheimers disease detection of the 2021 ADReSSo (Alzheimers Dementia Recognition through Spontaneous Speech) challenge. An accuracy of 83.1% was achieved on the test set, which amounts to an improvement of 4.23% over the baseline model. Our best-performing model that integrated component models using a stacking ensemble technique performed equally well on cross-validation and test data, indicating that it is robust against overfitting.
Intent classification is a task in spoken language understanding. An intent classification system is usually implemented as a pipeline process, with a speech recognition module followed by text processing that classifies the intents. There are also s
We present two multimodal fusion-based deep learning models that consume ASR transcribed speech and acoustic data simultaneously to classify whether a speaker in a structured diagnostic task has Alzheimers Disease and to what degree, evaluating the A
As voice assistants become more ubiquitous, they are increasingly expected to support and perform well on a wide variety of use-cases across different domains. We present a domain-aware rescoring framework suitable for achieving domain-adaptation dur
Language models (LMs) pre-trained on massive amounts of text, in particular bidirectional encoder representations from Transformers (BERT), generative pre-training (GPT), and GPT-2, have become a key technology for many natural language processing ta
We introduce Lookup-Table Language Models (LookupLM), a method for scaling up the size of RNN language models with only a constant increase in the floating point operations, by increasing the expressivity of the embedding table. In particular, we ins