ترغب بنشر مسار تعليمي؟ اضغط هنا

Compound Frechet Inception Distance for Quality Assessment of GAN Created Images

253   0   0.0 ( 0 )
 نشر من قبل Shadrokh Samavi
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

Generative adversarial networks or GANs are a type of generative modeling framework. GANs involve a pair of neural networks engaged in a competition in iteratively creating fake data, indistinguishable from the real data. One notable application of GANs is developing fake human faces, also known as deep fakes, due to the deep learning algorithms at the core of the GAN framework. Measuring the quality of the generated images is inherently subjective but attempts to objectify quality using standardized metrics have been made. One example of objective metrics is the Frechet Inception Distance (FID), which measures the difference between distributions of feature vectors for two separate datasets of images. There are situations that images with low perceptual qualities are not assigned appropriate FID scores. We propose to improve the robustness of the evaluation process by integrating lower-level features to cover a wider array of visual defects. Our proposed method integrates three levels of feature abstractions to evaluate the quality of generated images. Experimental evaluations show better performance of the proposed method for distorted images.



قيم البحث

اقرأ أيضاً

We consider distance functions between conditional distributions functions. We focus on the Wasserstein metric and its Gaussian case known as the Frechet Inception Distance (FID).We develop condition
Recently developed automatic dense image matching algorithms are now being implemented for DSM/DTM production, with their pixel-level surface generation capability offering the prospect of partially alleviating the need for manual and semi-automatic stereoscopic measurements. In this paper, five commercial/public software packages for 3D surface generation are evaluated, using 5cm GSD imagery recorded from a UAV. Generated surface models are assessed against point clouds generated from mobile LiDAR and manual stereoscopic measurements. The software packages considered are APS, MICMAC, SURE, Pix4UAV and an SGM implementation from DLR.
The explosive growth of image data facilitates the fast development of image processing and computer vision methods for emerging visual applications, meanwhile introducing novel distortions to the processed images. This poses a grand challenge to exi sting blind image quality assessment (BIQA) models, failing to continually adapt to such subpopulation shift. Recent work suggests training BIQA methods on the combination of all available human-rated IQA datasets. However, this type of approach is not scalable to a large number of datasets, and is cumbersome to incorporate a newly created dataset as well. In this paper, we formulate continual learning for BIQA, where a model learns continually from a stream of IQA datasets, building on what was learned from previously seen data. We first identify five desiderata in the new setting with a measure to quantify the plasticity-stability trade-off. We then propose a simple yet effective method for learning BIQA models continually. Specifically, based on a shared backbone network, we add a prediction head for a new dataset, and enforce a regularizer to allow all prediction heads to evolve with new data while being resistant to catastrophic forgetting of old data. We compute the quality score by an adaptive weighted summation of estimates from all prediction heads. Extensive experiments demonstrate the promise of the proposed continual learning method in comparison to standard training techniques for BIQA.
In this paper, we propose an image quality transformer (IQT) that successfully applies a transformer architecture to a perceptual full-reference image quality assessment (IQA) task. Perceptual representation becomes more important in image quality as sessment. In this context, we extract the perceptual feature representations from each of input images using a convolutional neural network (CNN) backbone. The extracted feature maps are fed into the transformer encoder and decoder in order to compare a reference and distorted images. Following an approach of the transformer-based vision models, we use extra learnable quality embedding and position embedding. The output of the transformer is passed to a prediction head in order to predict a final quality score. The experimental results show that our proposed model has an outstanding performance for the standard IQA datasets. For a large-scale IQA dataset containing output images of generative model, our model also shows the promising results. The proposed IQT was ranked first among 13 participants in the NTIRE 2021 perceptual image quality assessment challenge. Our work will be an opportunity to further expand the approach for the perceptual IQA task.
Recently, GAN based method has demonstrated strong effectiveness in generating augmentation data for person re-identification (ReID), on account of its ability to bridge the gap between domains and enrich the data variety in feature space. However, m ost of the ReID works pick all the GAN generated data as additional training samples or evaluate the quality of GAN generation at the entire data set level, ignoring the image-level essential feature of data in ReID task. In this paper, we analyze the in-depth characteristics of ReID sample and solve the problem of What makes a GAN-generated image good for ReID. Specifically, we propose to examine each data sample with id-consistency and diversity constraints by mapping image onto different spaces. With a metric-based sampling method, we demonstrate that not every GAN-generated data is beneficial for augmentation. Models trained with data filtered by our quality evaluation outperform those trained with the full augmentation set by a large margin. Extensive experiments show the effectiveness of our method on both supervised ReID task and unsupervised domain adaptation ReID task.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا