ﻻ يوجد ملخص باللغة العربية
We propose an intra frame predictive strategy for compression of 3D point cloud attributes. Our approach is integrated with the region adaptive graph Fourier transform (RAGFT), a multi-resolution transform formed by a composition of localized block transforms, which produces a set of low pass (approximation) and high pass (detail) coefficients at multiple resolutions. Since the transform operations are spatially localized, RAGFT coefficients at a given resolution may still be correlated. To exploit this phenomenon, we propose an intra-prediction strategy, in which decoded approximation coefficients are used to predict uncoded detail coefficients. The prediction residuals are then quantized and entropy coded. For the 8i dataset, we obtain gains up to 0.5db as compared to intra predicted point cloud compresion based on the region adaptive Haar transform (RAHT).
Point clouds have recently gained interest, especially for real-time applications and for 3D-scanned material, such as is used in autonomous driving, architecture, and engineering, to model real estate for renovation or display. Point clouds are asso
The recently proposed multi-layer sparse model has raised insightful connections between sparse representations and convolutional neural networks (CNN). In its original conception, this model was restricted to a cascade of convolutional synthesis rep
In video-based dynamic point cloud compression (V-PCC), 3D point clouds are projected onto 2D images for compressing with the existing video codecs. However, the existing video codecs are originally designed for natural visual signals, and it fails t
The sparse LiDAR point clouds become more and more popular in various applications, e.g., the autonomous driving. However, for this type of data, there exists much under-explored space in the corresponding compression framework proposed by MPEG, i.e.
In High Efficiency Video Coding (HEVC), excellent rate-distortion (RD) performance is achieved in part by having a flexible quadtree coding unit (CU) partition and a large number of intra-prediction modes. Such an excellent RD performance is achieved