ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant Enhancement of Unconventional Photon Blockade in a Dimer Chain

70   0   0.0 ( 0 )
 نشر من قبل You Wang
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Unconventional photon blockade refers to the suppression of multi-photon states in weakly nonlinear optical resonators via the destructive interference of different excitation pathways. It has been studied in a pair of coupled nonlinear resonators and other few-mode systems. Here, we show that unconventional photon blockade can be greatly enhanced in a chain of coupled resonators. Specifically, the strength of the nonlinearity in each resonator needed to achieve unconventional photon blockade is suppressed exponentially with lattice size. The analytic derivation, based on a weak drive approximation, is validated by wavefunction Monte Carlo simulations. These findings show that customized lattices of coupled resonators can be powerful tools for controlling multi-photon quantum states.

قيم البحث

اقرأ أيضاً

We study the photon blockade effect in a coupled cavity system, which is formed by a linear cavity coupled to a Kerr-type nonlinear cavity via a photon-hopping interaction. We explain the physical phenomenon from the viewpoint of the conventional and unconventional photon blockade effects. The corresponding physical mechanisms of the two kinds of photon blockade effects are based on the anharmonicity in the eigenenergy spectrum and the destructive quantum interference between two different transition paths, respectively. In particular, we find that the photon blockade via destructive quantum interference also exists in the conventional photon blockade regime, and that the unconventional photon blockade occurs in both the weak- and strong-Kerr nonlinearity cases. The photon blockade effect can be observed by calculating the second-order correlation function of the cavity field. This model is general and hence it can be implemented in various experimental setups such as coupled optical-cavity systems, coupled photon-magnon systems, and coupled superconducting-resonator systems. We present some discussions on the experimental feasibility.
It is shown that non-centrosymmetric materials with bulk second-order nonlinear susceptibility can be used to generate strongly antibunched radiation at an arbitrary wavelength, solely determined by the resonant behavior of suitably engineered couple d microcavities. The proposed scheme exploits the unconventional photon blockade of a coherent driving field at the input of a coupled cavity system, where one of the two cavities is engineered to resonate at both fundamental and second harmonic frequencies, respectively. Remarkably, the unconventional blockade mechanism occurs with reasonably low quality factors at both harmonics, and does not require a sharp doubly-resonant condition for the second cavity, thus proving its feasibility with current semiconductor technology.
We observe the unconventional photon blockade effect in quantum dot cavity QED, which, in contrast to conventional photon blockade, operates in the weak coupling regime. A single quantum dot transition is simultaneously coupled to two orthogonally po larized optical cavity modes, and by careful tuning of the input and output state of polarization, the unconventional photon blockade effect is observed. We find a minimum second-order correlation $g^{(2)}(0)approx0.37$ which corresponds to $g^{(2)}(0)approx0.005$ when corrected for detector jitter, and observe the expected polarization dependency and photon bunching and anti-bunching very close-by in parameter space, which indicates the abrupt change from phase to amplitude squeezing.
We study a 2D system of trion-polaritons at the quantum level and demonstrate that for monolayer semiconductors they can exhibit a strongly nonlinear optical response. The effect is due to the composite nature of trion-based excitations resulting in their nontrivial quantum statistical properties, and enhanced phase space filling effects. We present the full quantum theory to describe the statistics of trion-polaritons, and demonstrate that the associated nonlinearity persists at the level of few quanta, where two qualitatively different regimes of photon antibunching are present for weak and strong single photon-trion coupling. We find that single photon emission from trion-polaritons becomes experimentally feasible in state-of-the-art transition metal dichalcogenide (TMD) setups. This can foster the development of quantum polaritonics using 2D monolayers as a material platform.
Interactions are essential for the creation of correlated quantum many-body states. While two-body interactions underlie most natural phenomena, three- and four-body interactions are important for the physics of nuclei [1], exotic few-body states in ultracold quantum gases [2], the fractional quantum Hall effect [3], quantum error correction [4], and holography [5, 6]. Recently, a number of artificial quantum systems have emerged as simulators for many-body physics, featuring the ability to engineer strong interactions. However, the interactions in these systems have largely been limited to the two-body paradigm, and require building up multi-body interactions by combining two-body forces. Here, we demonstrate a pure N-body interaction between microwave photons stored in an arbitrary number of electromagnetic modes of a multimode cavity. The system is dressed such that there is collectively no interaction until a target total photon number is reached across multiple distinct modes, at which point they interact strongly. The microwave cavity features 9 modes with photon lifetimes of $sim 2$ ms coupled to a superconducting transmon circuit, forming a multimode circuit QED system with single photon cooperativities of $sim10^9$. We generate multimode interactions by using cavity photon number resolved drives on the transmon circuit to blockade any multiphoton state with a chosen total photon number distributed across the target modes. We harness the interaction for state preparation, preparing Fock states of increasing photon number via quantum optimal control pulses acting only on the cavity modes. We demonstrate multimode interactions by generating entanglement purely with uniform cavity drives and multimode photon blockade, and characterize the resulting two- and three-mode W states using a new protocol for multimode Wigner tomography.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا