ﻻ يوجد ملخص باللغة العربية
For quantum search via the continuous-time quantum walk, the evolution of the whole system is usually limited in a small subspace. In this paper, we discuss how the symmetries of the graphs are related to the existence of such an invariant subspace, which also suggests a dimensionality reduction method based on group representation theory. We observe that in the one-dimensional subspace spanned by each desired basis state which assembles the identically evolving original basis states, we always get a trivial representation of the symmetry group. So we could find the desired basis by exploiting the projection operator of the trivial representation. Besides being technical guidance in this type of problem, this discussion also suggests that all the symmetries are used up in the invariant subspace and the asymmetric part of the Hamiltonian is very important for the purpose of quantum search.
We study the percolation of a quantum particle on quasicrystal lattices and compare it with the square lattice. For our study, we have considered quasicrystal lattices modelled on the pentagonally symmetric Penrose tiling and the octagonally symmetri
We define the hitting (or absorbing) time for the case of continuous quantum walks by measuring the walk at random times, according to a Poisson process with measurement rate $lambda$. From this definition we derive an explicit formula for the hittin
In this paper, we study the quantum walk on the 2D Penrose Lattice, which is intermediate between periodic and disordered structure. Quantum walk on Penrose Lattice is less efficient in transport comparing to the regular lattices. By calculating the
We study the quantum walk search algorithm of Shenvi, Kempe and Whaley [PRA 67 052307 (2003)] on data structures of one to two spatial dimensions, on which the algorithm is thought to be less efficient than in three or more spatial dimensions. Our ai
In this paper, we consider continuous-time quantum walks (CTQWs) on finite graphs determined by the Laplacian matrices. By introducing fully interconnected graph decomposition of given graphs, we show a decomposition method for the Laplacian matrices