ﻻ يوجد ملخص باللغة العربية
The Calorimetric Electron Telescope (CALET), in operation on the International Space Station since 2015, collected a large sample of cosmic-ray iron over a wide energy interval. In this Letter a measurement of the iron spectrum is presented in the range of kinetic energy per nucleon from 10 GeV$/n$ to 2.0 TeV$/n$ allowing the inclusion of iron in the list of elements studied with unprecedented precision by space-borne instruments. The measurement is based on observations carried out from January 2016 to May 2020. The CALET instrument can identify individual nuclear species via a measurement of their electric charge with a dynamic range extending far beyond iron (up to atomic number $Z$ = 40). The energy is measured by a homogeneous calorimeter with a total equivalent thickness of 1.2 proton interaction lengths preceded by a thin (3 radiation lengths) imaging section providing tracking and energy sampling. The analysis of the data and the detailed assessment of systematic uncertainties are described and results are compared with the findings of previous experiments. The observed differential spectrum is consistent within the errors with previous experiments. In the region from 50 GeV$/n$ to 2 TeV$/n$ our present data are compatible with a single power law with spectral index -2.60 $pm$ 0.03.
In this paper, we present the measurement of the energy spectra of carbon and oxygen in cosmic rays based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station from October 2015 to October 2019. Analysis,
In this paper, we present the analysis and results of a direct measurement of the cosmic-ray proton spectrum with the CALET instrument onboard the International Space Station, including the detailed assessment of systematic uncertainties. The observa
First results of a cosmic-ray electron + positron spectrum, from 10 GeV to 3 TeV, is presented based upon observations with the CALET instrument on the ISS starting in October, 2015. Nearly a half million electron + positron events are included in th
Extended results on the cosmic-ray electron + positron spectrum from 11 GeV to 4.8 TeV are presented based on observations with the Calorimetric Electron Telescope (CALET) on the International Space Station utilizing the data up to November 2017. The
We present a precise measurement of the combined electron plus positron flux from 0.5 GeV to 1 TeV, based on the analysis of the data collected by the Alpha Magnetic Spectrometer during the first 30 months of operations aboard the International Space