ﻻ يوجد ملخص باللغة العربية
The complete band representations (BRs) have been constructed in the work of topological quantum chemistry. Each BR is expressed by either a certain orbital at a set of Wyckoff sites in realspace, or by a set of irreducible representations in momentum space. In this work, we define unconventional materials as the topologically trivial compounds whose occupied bands can be expressedas a sum of elementary BRs, but not a sum of atomic-orbital-induced BRs (aBRs). Namely, these materials possess the unconventional feature of the mismatch between average electronic centers and atomic positions. The existence of an essential BR at an empty site is described by nonzero real-space invariants. The valence states can be derived by the aBR decomposition, and unconventional materials are supposed to have an uncompensatedtotal valence state. The high-throughput screening for unconventional materials has been performed through the first-principles calculations. We have discovered 392 unconventional compounds with detailed information in the table of the results, including thermoelectronic materials, higher-order topological insulators, electrides, hydrogenstorage materials, hydrogen evolution reaction electrocatalysts, electrodes, and superconductors. The diversity of their interesting properties and applications would be widely studied in the future.
In addition to being the core quantity in density functional theory, the charge density can be used in many tertiary analyses in materials sciences from bonding to assigning charge to specific atoms. The charge density is data-rich since it contains
Hysteresis underlies a large number of phase transitions in solids, giving rise to exotic metastable states that are otherwise inaccessible. Here, we report an unconventional hysteretic transition in a quasi-2D material, EuTe4. By combining transport
We review existing manifestations and prospects for ferroelectricity in electronically and optically active carbon-based materials. The focus point is the proposal for the electronic ferroelectricity in conjugated polymers from the family of substitu
The intense theoretical and experimental interest in topological insulators and semimetals has established band structure topology as a fundamental material property. Consequently, identifying band topologies has become an important, but often challe
The issue of the net charge at insulating oxide interfaces is shortly reviewed with the ambition of dispelling myths of such charges being affected by covalency and related charge density effects. For electrostatic analysis purposes, the net charge a