ﻻ يوجد ملخص باللغة العربية
RGB-Infrared (IR) person re-identification aims to retrieve person-of-interest from heterogeneous cameras, easily suffering from large image modality discrepancy caused by different sensing wavelength ranges. Existing work usually minimizes such discrepancy by aligning domain distribution of global features, while neglecting the intra-modality structural relations between semantic parts. This could result in the network overly focusing on local cues, without considering long-range body part dependencies, leading to meaningless region representations. In this paper, we propose a graph-enabled distribution matching solution, dubbed Geometry-Guided Dual-Alignment (G2DA) learning, for RGB-IR ReID. It can jointly encourage the cross-modal consistency between part semantics and structural relations for fine-grained modality alignment by solving a graph matching task within a multi-scale skeleton graph that embeds human topology information. Specifically, we propose to build a semantic-aligned complete graph into which all cross-modality images can be mapped via a pose-adaptive graph construction mechanism. This graph represents extracted whole-part features by nodes and expresses the node-wise similarities with associated edges. To achieve the graph-based dual-alignment learning, an Optimal Transport (OT) based structured metric is further introduced to simultaneously measure point-wise relations and group-wise structural similarities across modalities. By minimizing the cost of an inter-modality transport plan, G2DA can learn a consistent and discriminative feature subspace for cross-modality image retrieval. Furthermore, we advance a Message Fusion Attention (MFA) mechanism to adaptively reweight the information flow of semantic propagation, effectively strengthening the discriminability of extracted semantic features.
Visible-infrared person re-identification (VI-ReID) is a challenging cross-modality pedestrian retrieval problem. Due to the large intra-class variations and cross-modality discrepancy with large amount of sample noise, it is difficult to learn discr
RGB-Infrared (IR) person re-identification is very challenging due to the large cross-modality variations between RGB and IR images. The key solution is to learn aligned features to the bridge RGB and IR modalities. However, due to the lack of corres
RGB-Infrared person re-identification (RGB-IR Re-ID) aims to match persons from heterogeneous images captured by visible and thermal cameras, which is of great significance in the surveillance system under poor light conditions. Facing great challeng
RGB-Infrared (IR) cross-modality person re-identification (re-ID), which aims to search an IR image in RGB gallery or vice versa, is a challenging task due to the large discrepancy between IR and RGB modalities. Existing methods address this challeng
RGB-infrared person re-identification is a challenging task due to the intra-class variations and cross-modality discrepancy. Existing works mainly focus on learning modality-shared global representations by aligning image styles or feature distribut