ﻻ يوجد ملخص باللغة العربية
COVID-19 has affected the world economy and the daily life routine of almost everyone. It has been a hot topic on social media platforms such as Twitter, Facebook, etc. These social media platforms enable users to share information with other users who can reshare this information, thus causing this information to spread. Twitters retweet functionality allows users to share the existing content with other users without altering the original content. Analysis of social media platforms can help in detecting emergencies during pandemics that lead to taking preventive measures. One such type of analysis is predicting the number of retweets for a given COVID-19 related tweet. Recently, CIKM organized a retweet prediction challenge for COVID-19 tweets focusing on using numeric features only. However, our hypothesis is, tweet text may play a vital role in an accurate retweet prediction. In this paper, we combine numeric and text features for COVID-19 related retweet predictions. For this purpose, we propose two CNN and RNN based models and evaluate the performance of these models on a publicly available TweetsCOV19 dataset using seven different evaluation metrics. Our evaluation results show that combining tweet text with numeric features improves the performance of retweet prediction significantly.
As the COVID-19 pandemic is disrupting life worldwide, related online communities are popping up. In particular, two new communities, /r/China flu and /r/Coronavirus, emerged on Reddit and have been dedicated to COVID- related discussions from the ve
The COVID-19 pandemic has affected peoples lives around the world on an unprecedented scale. We intend to investigate hoarding behaviors in response to the pandemic using large-scale social media data. First, we collect hoarding-related tweets shortl
Successful navigation of the Covid-19 pandemic is predicated on public cooperation with safety measures and appropriate perception of risk, in which emotion and attention play important roles. Signatures of public emotion and attention are present in
The objective of the study is to examine coronavirus disease (COVID-19) related discussions, concerns, and sentiments that emerged from tweets posted by Twitter users. We analyze 4 million Twitter messages related to the COVID-19 pandemic using a lis
Online social media provides a channel for monitoring peoples social behaviors and their mental distress. Due to the restrictions imposed by COVID-19 people are increasingly using online social networks to express their feelings. Consequently, there