ﻻ يوجد ملخص باللغة العربية
Abstract: An induced-transmission filter (ITF) uses an ultrathin layer of metal positioned at an electric-field node within a dielectric thin-film bandpass filter to select one transmission band while suppressing other transmission bands that would have been present without the metal layer. Here, we introduce a switchable mid-infrared ITF where the metal film can be switched on and off, enabling the modulation of the filter response from single-band to multiband. The switching is enabled by a deeply subwavelength film of vanadium dioxide (VO2), which undergoes a reversible insulator-to-metal phase transition. We designed and experimentally demonstrated an ITF that can switch between two states: one broad passband across the long-wave infrared (LWIR, 8 - 12 um) and one narrow passband at ~8.8 um. Our work generalizes the ITF -- previously a niche type of bandpass filter -- into a new class of tunable devices. Furthermore, our unique fabrication process -- which begins with thin-film VO2 on a suspended membrane -- enables the integration of VO2 into any thin-film assembly that is compatible with physical vapor deposition (PVD) processes, and is thus a new platform for realizing tunable thin-film filters.
The insulator-to-metal transition (IMT) in vanadium dioxide (VO2) can enable a variety of optics applications, including switching and modulation, optical limiting, and tuning of optical resonators. Despite the widespread interest in optics, the opti
High performance metasurfaces for thermal radiative cooling applications can be identified using computational optimization methods. This work has identified an easy-to-fabricate temperature phase transition VO2 nanowire array laid atop dielectric Ba
Phase competition in correlated oxides offers tantalizing opportunities as many intriguing physical phenomena occur near the phase transitions. Owing to a sharp metal-insulator transition (MIT) near room temperature, correlated vanadium dioxide (VO2)
Nonlinear spectroscopy in the extreme ultraviolet (EUV) and soft x-ray spectral range offers the opportunity for element selective probing of ultrafast dynamics using core-valence transitions (Mukamel et al., Acc. Chem. Res. 42, 553 (2009)). We demon
Recently, phase-change materials (PCMs) have drawn more attention due to the dynamically tunable optical properties. Here, we investigate the active control of electromagnetically induced transparency (EIT) analogue based on terahertz (THz) metamater