ﻻ يوجد ملخص باللغة العربية
Chv{a}tal conjectured in 1973 the existence of some constant $t$ such that all $t$-tough graphs with at least three vertices are hamiltonian. While the conjecture has been proven for some special classes of graphs, it remains open in general. We say that a graph is $(K_2 cup 3K_1)$-free if it contains no induced subgraph isomorphic to $K_2 cup 3K_1$, where $K_2 cup 3K_1$ is the disjoint union of an edge and three isolated vertices. In this paper, we show that every 3-tough $(K_2 cup 3K_1)$-free graph with at least three vertices is hamiltonian.
Let $G$ be a $t$-tough graph on $nge 3$ vertices for some $t>0$. It was shown by Bauer et al. in 1995 that if the minimum degree of $G$ is greater than $frac{n}{t+1}-1$, then $G$ is hamiltonian. In terms of Ores conditions in this direction, the prob
We show that for any fixed $alpha>0$, cherry-quasirandom 3-graphs of positive density and sufficiently large order $n$ with minimum vertex degree $alpha binom n2$ have a tight Hamilton cycle. This solves a conjecture of Aigner-Horev and Levy.
The toughness of a noncomplete graph $G$ is the maximum real number $t$ such that the ratio of $|S|$ to the number of components of $G-S$ is at least $t$ for every cutset $S$ of $G$, and the toughness of a complete graph is defined to be $infty$. Det
Following a problem posed by Lovasz in 1969, it is believed that every connected vertex-transitive graph has a Hamilton path. This is shown here to be true for cubic Cayley graphs arising from groups having a $(2,s,3)$-presentation, that is, for grou
This paper presents sufficient conditions for Hamiltonian paths and cycles in graphs. Letting $lambdaleft( Gright) $ denote the spectral radius of the adjacency matrix of a graph $G,$ the main results of the paper are: (1) Let $kgeq1,$ $ngeq k^{3}/