ترغب بنشر مسار تعليمي؟ اضغط هنا

Giant photoelasticity of polaritons for detection of coherent phonons in a superlattice with quantum sensitivity

49   0   0.0 ( 0 )
 نشر من قبل Serhii Kukhtaruk M.
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The functionality of phonon-based quantum devices largely depends on the efficiency of interaction of phonons with other excitations. For phonon frequencies above 20 GHz, generation and detection of phonon quanta can be monitored through photons. The photon-phonon interaction can be enormously strengthened by involving an intermediate resonant quasiparticle, e.g. an exciton, with which a photon forms a polariton. In this work, we discover giant photoelasticity of exciton-polaritons in a short-period superlattice and exploit it for counting propagating acoustic phonons. We demonstrate that 42 GHz coherent phonons can be detected with extremely high sensitivity in the time domain Brillouin oscillations by probing with photons in the spectral vicinity of the polariton resonance.

قيم البحث

اقرأ أيضاً

441 - G. Arregui , O. Ortiz , M. Esmann 2018
Inspired by concepts developed for fermionic systems in the framework of condensed matter physics, topology and topological states are recently being explored also in bosonic systems. The possibility of engineering systems with unidirectional wave pr opagation and protected against disorder is at the heart of this growing interest. Topogical acoustic effects have been observed in a variety of systems, most of them based on kHz-MHz sound waves, with typical wavelength of the order of the centimeter. Recently, some of these concepts have been successfully transferred to acoustic phonons in nanoscaled multilayered systems. The reported demonstration of confined topological phononic modes was based on Raman scattering spectroscopy, yet the resolution did not suffice to determine lifetimes and to identify other acoustic modes in the system. Here, we use time-resolved pump-probe measurements using an asynchronous optical sampling (ASOPS) technique to overcome these resolution limitations. By means of one-dimensional GaAs/AlAs distributed Bragg reflectors (DBRs) as building blocks, we engineer high frequency ($sim$ 200 GHz) topological acoustic interface states. We are able to clearly distinguish confined topological states from stationary band edge modes. The detection scheme reflects the symmetry of the modes directly through the selection rules, evidencing the topological nature of the measured confined state. These experiments enable a new tool in the study of the more complex topology-driven phonon dynamics such as phonon nonlinearities and optomechanical systems with simultaneous confinement of light and sound.
Two-dimensional transition metal dichalcogenide (TMD) semiconductors provide a unique possibility to access the electronic valley degree of freedom using polarized light, opening the way to valley information transfer between distant systems. Exciton s with a well-defined valley index (or valley pseudospin) as well as superpositions of the exciton valley states can be created with light having circular and linear polarization, respectively. However, the generated excitons have short lifetimes (ps) and are also subject to the electron-hole exchange interaction leading to fast relaxation of the valley pseudospin and coherence. Here we show that control of these processes can be gained by embedding a monolayer of WSe$_2$ in an optical microcavity, where part-light-part-matter exciton-polaritons are formed in the strong light-matter coupling regime. We demonstrate the optical initialization of the valley coherent polariton populations, exhibiting luminescence with a linear polarization degree up to 3 times higher than that of the excitons. We further control the evolution of the polariton valley coherence using a Faraday magnetic field to rotate the valley pseudospin by an angle defined by the exciton-cavity-mode detuning, which exceeds the rotation angle in the bare exciton. This work provides unique insight into the decoherence mechanisms in TMDs and demonstrates the potential for engineering the valley pseudospin dynamics in monolayer semiconductors embedded in photonic structures.
We show that the combined effect of photon emission and Coulomb interactions may drive an exciton-polariton system towards a dynamical coherent state, even without phonon thermalization or any other relaxation mechanism. Exact diagonalization results for a finite system (a multilevel quantum dot interacting with the lowest energy photon mode of a microcavity) are presented in support to this statement.
We discuss the excitation of polaritons---strongly-coupled states of light and matter---by quantum light, instead of the usual laser or thermal excitation. As one illustration of the new horizons thus opened, we introduce Mollow spectroscopy, a theor etical concept for a spectroscopic technique that consists in scanning the output of resonance fluorescence onto an optical target, from which weak nonlinearities can be read with high precision even in strongly dissipative environments.
We review recent studies of coherent phonons (CPs) corresponding to the radial breathing mode (RBM) and G-mode in single-wall carbon nanotubes (SWCNTs) and graphene. Because of the bandgap-diameter relationship, RBM-CPs cause bandgap oscillations in SWCNTs, modulating interband transitions at terahertz frequencies. Interband resonances enhance CP signals, allowing for chirality determination. Using pulse shaping, one can selectively excite speci!c-chirality SWCNTs within an ensemble. G-mode CPs exhibit temperature-dependent dephasing via interaction with RBM phonons. Our microscopic theory derives a driven oscillator equation with a density-dependent driving term, which correctly predicts CP trends within and between (2n+m) families. We also find that the diameter can initially increase or decrease. Finally, we theoretically study the radial breathing like mode in graphene nanoribbons. For excitation near the absorption edge, the driving term is much larger for zigzag nanoribbons. We also explain how the armchair nanoribbon width changes in response to laser excitation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا