ترغب بنشر مسار تعليمي؟ اضغط هنا

A Benchmark of Dynamical Variational Autoencoders applied to Speech Spectrogram Modeling

121   0   0.0 ( 0 )
 نشر من قبل Xiaoyu Bie
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

The Variational Autoencoder (VAE) is a powerful deep generative model that is now extensively used to represent high-dimensional complex data via a low-dimensional latent space learned in an unsupervised manner. In the original VAE model, input data vectors are processed independently. In recent years, a series of papers have presented different extensions of the VAE to process sequential data, that not only model the latent space, but also model the temporal dependencies within a sequence of data vectors and corresponding latent vectors, relying on recurrent neural networks. We recently performed a comprehensive review of those models and unified them into a general class called Dynamical Variational Autoencoders (DVAEs). In the present paper, we present the results of an experimental benchmark comparing six of those DVAE models on the speech analysis-resynthesis task, as an illustration of the high potential of DVAEs for speech modeling.



قيم البحث

اقرأ أيضاً

This paper focuses on single-channel semi-supervised speech enhancement. We learn a speaker-independent deep generative speech model using the framework of variational autoencoders. The noise model remains unsupervised because we do not assume prior knowledge of the noisy recording environment. In this context, our contribution is to propose a noise model based on alpha-stable distributions, instead of the more conventional Gaussian non-negative matrix factorization approach found in previous studies. We develop a Monte Carlo expectation-maximization algorithm for estimating the model parameters at test time. Experimental results show the superiority of the proposed approach both in terms of perceptual quality and intelligibility of the enhanced speech signal.
In this paper we address the problem of enhancing speech signals in noisy mixtures using a source separation approach. We explore the use of neural networks as an alternative to a popular speech variance model based on supervised non-negative matrix factorization (NMF). More precisely, we use a variational autoencoder as a speaker-independent supervised generative speech model, highlighting the conceptual similarities that this approach shares with its NMF-based counterpart. In order to be free of generalization issues regarding the noisy recording environments, we follow the approach of having a supervised model only for the target speech signal, the noise model being based on unsupervised NMF. We develop a Monte Carlo expectation-maximization algorithm for inferring the latent variables in the variational autoencoder and estimating the unsupervised model parameters. Experiments show that the proposed method outperforms a semi-supervised NMF baseline and a state-of-the-art fully supervised deep learning approach.
In this paper we address speaker-independent multichannel speech enhancement in unknown noisy environments. Our work is based on a well-established multichannel local Gaussian modeling framework. We propose to use a neural network for modeling the sp eech spectro-temporal content. The parameters of this supervised model are learned using the framework of variational autoencoders. The noisy recording environment is supposed to be unknown, so the noise spectro-temporal modeling remains unsupervised and is based on non-negative matrix factorization (NMF). We develop a Monte Carlo expectation-maximization algorithm and we experimentally show that the proposed approach outperforms its NMF-based counterpart, where speech is modeled using supervised NMF.
Automatic Speech Recognition (ASR) systems have proliferated over the recent years to the point that free platforms such as YouTube now provide speech recognition services. Given the wide selection of ASR systems, we contribute to the field of automa tic speech recognition by comparing the relative performance of two sets of manual transcriptions and five sets of automatic transcriptions (Google Cloud, IBM Watson, Microsoft Azure, Trint, and YouTube) to help researchers to select accurate transcription services. In addition, we identify nonverbal behaviors that are associated with unintelligible speech, as indicated by high word error rates. We show that manual transcriptions remain superior to current automatic transcriptions. Amongst the automatic transcription services, YouTube offers the most accurate transcription service. For non-verbal behavioral involvement, we provide evidence that the variability of smile intensities from the listener is high (low) when the speaker is clear (unintelligible). These findings are derived from videoconferencing interactions between student doctors and simulated patients; therefore, we contribute towards both the ASR literature and the healthcare communication skills teaching community.
Dynamical variational auto-encoders (DVAEs) are a class of deep generative models with latent variables, dedicated to time series data modeling. DVAEs can be considered as extensions of the variational autoencoder (VAE) that include the modeling of t emporal dependencies between successive observed and/or latent vectors in data sequences. Previous work has shown the interest of DVAEs and their better performance over the VAE for speech signals (spectrogram) modeling. Independently, the VAE has been successfully applied to speech enhancement in noise, in an unsupervised noise-agnostic set-up that does not require the use of a parallel dataset of clean and noisy speech samples for training, but only requires clean speech signals. In this paper, we extend those works to DVAE-based single-channel unsupervised speech enhancement, hence exploiting both speech signals unsupervised representation learning and dynamics modeling. We propose an unsupervised speech enhancement algorithm based on the most general form of DVAEs, that we then adapt to three specific DVAE models to illustrate the versatility of the framework. More precisely, we combine DVAE-based speech priors with a noise model based on nonnegative matrix factorization, and we derive a variational expectation-maximization (VEM) algorithm to perform speech enhancement. Experimental results show that the proposed approach based on DVAEs outperforms its VAE counterpart and a supervised speech enhancement baseline.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا