ترغب بنشر مسار تعليمي؟ اضغط هنا

Optimal qubit assignment and routing via integer programming

154   0   0.0 ( 0 )
 نشر من قبل Giacomo Nannicini
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We consider the problem of mapping a logical quantum circuit onto a given hardware with limited two-qubit connectivity. We model this problem as an integer linear program, using a network flow formulation with binary variables that includes the initial allocation of qubits and their routing. We consider several cost functions: an approximation of the fidelity of the circuit, its total depth, and a measure of cross-talk, all of which can be incorporated in the model. Numerical experiments on synthetic data and different hardware topologies indicate that the error rate and depth can be optimized simultaneously without significant loss. We test our algorithm on a large number of quantum volume circuits, optimizing for error rate and depth; our algorithm significantly reduces the number of CNOTs compared to Qiskits default transpiler SABRE, and produces circuits that, when executed on hardware, exhibit higher fidelity.



قيم البحث

اقرأ أيضاً

A major limitation of current generations of quantum annealers is the sparse connectivity of manufactured qubits in the hardware graph. This technological limitation generated considerable interest, motivating efforts to design efficient and adroit m inor-embedding procedures that bypass sparsity constraints. In this paper, starting from a previous equational formulation by Dridi et al. (arXiv:1810.01440), we propose integer programming (IP) techniques for solving the minor-embedding problem. The first approach involves a direct translation from the previous equational formulation to IP, while the second decomposes the problem into an assignment master problem and fiber condition checking subproblems. The proposed methods are able to detect instance infeasibility and provide bounds on solution quality, capabilities not offered by currently employed heuristic methods. We demonstrate the efficacy of our methods with an extensive computational assessment involving three different families of random graphs of varying sizes and densities. The direct translation as a monolithic IP model can be solved with existing commercial solvers yielding valid minor-embeddings, however, is outperformed overall by the decomposition approach. Our results demonstrate the promise of our methods for the studied benchmarks, highlighting the advantages of using IP technology for minor-embedding problems.
Nuclear Magnetic Resonance (NMR) Spectroscopy is the second most used technique (after X-ray crystallography) for structural determination of proteins. A computational challenge in this technique involves solving a discrete optimization problem that assigns the resonance frequency to each atom in the protein. This paper introduces LIAN (LInear programming Assignment for NMR), a novel linear programming formulation of the problem which yields state-of-the-art results in simulated and experimental datasets.
Given restrictions on the availability of data, active learning is the process of training a model with limited labeled data by selecting a core subset of an unlabeled data pool to label. Although selecting the most useful points for training is an o ptimization problem, the scale of deep learning data sets forces most selection strategies to employ efficient heuristics. Instead, we propose a new integer optimization problem for selecting a core set that minimizes the discrete Wasserstein distance from the unlabeled pool. We demonstrate that this problem can be tractably solved with a Generalized Benders Decomposition algorithm. Our strategy requires high-quality latent features which we obtain by unsupervised learning on the unlabeled pool. Numerical results on several data sets show that our optimization approach is competitive with baselines and particularly outperforms them in the low budget regime where less than one percent of the data set is labeled.
Shunt FACTS devices, such as, a Static Var Compensator (SVC), are capable of providing local reactive power compensation. They are widely used in the network to reduce the real power loss and improve the voltage profile. This paper proposes a plannin g model based on mixed integer conic programming (MICP) to optimally allocate SVCs in the transmission network considering load uncertainty. The load uncertainties are represented by a number of scenarios. Reformulation and linearization techniques are utilized to transform the original non-convex model into a convex second order cone programming (SOCP) model. Numerical case studies based on the IEEE 30-bus system demonstrate the effectiveness of the proposed planning model.
Quantum information leverages properties of quantum behaviors in order to perform useful tasks such as secure communication and randomness certification. Nevertheless, not much is known about the intricate geometric features of the set quantum behavi ors. In this paper we study the structure of the set of quantum correlators using semidefinite programming. Our main results are (i) a generalization of the analytic description by Tsirelson-Landau-Masanes, (ii) necessary and sufficient conditions for extremality and exposedness, and (iii) an operational interpretation of extremality in the case of two dichotomic measurements, in terms of self-testing. We illustrate the usefulness of our theoretical findings with many examples and extensive computational work.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا