ﻻ يوجد ملخص باللغة العربية
It is challenging to directly estimate the geometry of human from a single image due to the high diversity and complexity of body shapes with the various clothing styles. Most of model-based approaches are limited to predict the shape and pose of a minimally clothed body with over-smoothing surface. Although capturing the fine detailed geometries, the model-free methods are lack of the fixed mesh topology. To address these issues, we propose a novel topology-preserved human reconstruction approach by bridging the gap between model-based and model-free human reconstruction. We present an end-to-end neural network that simultaneously predicts the pixel-aligned implicit surface and the explicit mesh model built by graph convolutional neural network. Moreover, an extra graph convolutional neural network is employed to estimate the vertex offsets between the implicit surface and parametric mesh model. Finally, we suggest an efficient implicit registration method to refine the neural network output in implicit space. Experiments on DeepHuman dataset showed that our approach is effective.
Omnidirectional video enables spherical stimuli with the $360 times 180^ circ$ viewing range. Meanwhile, only the viewport region of omnidirectional video can be seen by the observer through head movement (HM), and an even smaller region within the v
Modeling 3D humans accurately and robustly from a single image is very challenging, and the key for such an ill-posed problem is the 3D representation of the human models. To overcome the limitations of regular 3D representations, we propose Parametr
A few years ago, the first CNN surpassed human performance on ImageNet. However, it soon became clear that machines lack robustness on more challenging test cases, a major obstacle towards deploying machines in the wild and towards obtaining better c
The increasing availability of video recordings made by multiple cameras has offered new means for mitigating occlusion and depth ambiguities in pose and motion reconstruction methods. Yet, multi-view algorithms strongly depend on camera parameters,
Medical imaging is playing a more and more important role in clinics. However, there are several issues in different imaging modalities such as slow imaging speed in MRI, radiation injury in CT and PET. Therefore, accelerating MRI, reducing radiation