ترغب بنشر مسار تعليمي؟ اضغط هنا

MlTr: Multi-label Classification with Transformer

94   0   0.0 ( 0 )
 نشر من قبل Xing Cheng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

The task of multi-label image classification is to recognize all the object labels presented in an image. Though advancing for years, small objects, similar objects and objects with high conditional probability are still the main bottlenecks of previous convolutional neural network(CNN) based models, limited by convolutional kernels representational capacity. Recent vision transformer networks utilize the self-attention mechanism to extract the feature of pixel granularity, which expresses richer local semantic information, while is insufficient for mining global spatial dependence. In this paper, we point out the three crucial problems that CNN-based methods encounter and explore the possibility of conducting specific transformer modules to settle them. We put forward a Multi-label Transformer architecture(MlTr) constructed with windows partitioning, in-window pixel attention, cross-window attention, particularly improving the performance of multi-label image classification tasks. The proposed MlTr shows state-of-the-art results on various prevalent multi-label datasets such as MS-COCO, Pascal-VOC, and NUS-WIDE with 88.5%, 95.8%, and 65.5% respectively. The code will be available soon at https://github.com/starmemda/MlTr/

قيم البحث

اقرأ أيضاً

This paper presents a simple and effective approach to solving the multi-label classification problem. The proposed approach leverages Transformer decoders to query the existence of a class label. The use of Transformer is rooted in the need of extra cting local discriminative features adaptively for different labels, which is a strongly desired property due to the existence of multiple objects in one image. The built-in cross-attention module in the Transformer decoder offers an effective way to use label embeddings as queries to probe and pool class-related features from a feature map computed by a vision backbone for subsequent binary classifications. Compared with prior works, the new framework is simple, using standard Transformers and vision backbones, and effective, consistently outperforming all previous works on five multi-label classification data sets, including MS-COCO, PASCAL VOC, NUS-WIDE, and Visual Genome. Particularly, we establish $91.3%$ mAP on MS-COCO. We hope its compact structure, simple implementation, and superior performance serve as a strong baseline for multi-label classification tasks and future studies. The code will be available soon at https://github.com/SlongLiu/query2labels.
80 - Ya Wang , Dongliang He , Fu Li 2019
Images or videos always contain multiple objects or actions. Multi-label recognition has been witnessed to achieve pretty performance attribute to the rapid development of deep learning technologies. Recently, graph convolution network (GCN) is lever aged to boost the performance of multi-label recognition. However, what is the best way for label correlation modeling and how feature learning can be improved with label system awareness are still unclear. In this paper, we propose a label graph superimposing framework to improve the conventional GCN+CNN framework developed for multi-label recognition in the following two aspects. Firstly, we model the label correlations by superimposing label graph built from statistical co-occurrence information into the graph constructed from knowledge priors of labels, and then multi-layer graph convolutions are applied on the final superimposed graph for label embedding abstraction. Secondly, we propose to leverage embedding of the whole label system for better representation learning. In detail, lateral connections between GCN and CNN are added at shallow, middle and deep layers to inject information of label system into backbone CNN for label-awareness in the feature learning process. Extensive experiments are carried out on MS-COCO and Charades datasets, showing that our proposed solution can greatly improve the recognition performance and achieves new state-of-the-art recognition performance.
Multi-label image classification is the task of predicting a set of labels corresponding to objects, attributes or other entities present in an image. In this work we propose the Classification Transformer (C-Tran), a general framework for multi-labe l image classification that leverages Transformers to exploit the complex dependencies among visual features and labels. Our approach consists of a Transformer encoder trained to predict a set of target labels given an input set of masked labels, and visual features from a convolutional neural network. A key ingredient of our method is a label mask training objective that uses a ternary encoding scheme to represent the state of the labels as positive, negative, or unknown during training. Our model shows state-of-the-art performance on challenging datasets such as COCO and Visual Genome. Moreover, because our model explicitly represents the uncertainty of labels during training, it is more general by allowing us to produce improved results for images with partial or extra label annotations during inference. We demonstrate this additional capability in the COCO, Visual Genome, News500, and CUB image datasets.
Recently, as an effective way of learning latent representations, contrastive learning has been increasingly popular and successful in various domains. The success of constrastive learning in single-label classifications motivates us to leverage this learning framework to enhance distinctiveness for better performance in multi-label image classification. In this paper, we show that a direct application of contrastive learning can hardly improve in multi-label cases. Accordingly, we propose a novel framework for multi-label classification with contrastive learning in a fully supervised setting, which learns multiple representations of an image under the context of different labels. This facilities a simple yet intuitive adaption of contrastive learning into our model to boost its performance in multi-label image classification. Extensive experiments on two benchmark datasets show that the proposed framework achieves state-of-the-art performance in the comparison with the advanced methods in multi-label classification.
Extreme Multi-label text Classification (XMC) is a task of finding the most relevant labels from a large label set. Nowadays deep learning-based methods have shown significant success in XMC. However, the existing methods (e.g., AttentionXML and X-Tr ansformer etc) still suffer from 1) combining several models to train and predict for one dataset, and 2) sampling negative labels statically during the process of training label ranking model, which reduces both the efficiency and accuracy of the model. To address the above problems, we proposed LightXML, which adopts end-to-end training and dynamic negative labels sampling. In LightXML, we use generative cooperative networks to recall and rank labels, in which label recalling part generates negative and positive labels, and label ranking part distinguishes positive labels from these labels. Through these networks, negative labels are sampled dynamically during label ranking part training by feeding with the same text representation. Extensive experiments show that LightXML outperforms state-of-the-art methods in five extreme multi-label datasets with much smaller model size and lower computational complexity. In particular, on the Amazon dataset with 670K labels, LightXML can reduce the model size up to 72% compared to AttentionXML.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا