ترغب بنشر مسار تعليمي؟ اضغط هنا

Wireless Communication with Extremely Large-Scale Intelligent Reflecting Surface

104   0   0.0 ( 0 )
 نشر من قبل Chao Feng
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Intelligent reflecting surface (IRS) is a promising technology for wireless communications, thanks to its potential capability to engineer the radio environment. However, in practice, such an envisaged benefit is attainable only when the passive IRS is of a sufficiently large size, for which the conventional uniform plane wave (UPW)-based channel model may become inaccurate. In this paper, we pursue a new channel modelling and performance analysis for wireless communications with extremely large-scale IRS (XL-IRS). By taking into account the variations in signals amplitude and projected aperture across different reflecting elements, we derive both lower- and upper-bounds of the received signal-to-noise ratio (SNR) for the general uniform planar array (UPA)-based XL-IRS. Our results reveal that, instead of scaling quadratically with the increased number of reflecting elements M as in the conventional UPW model, the SNR under the more practically applicable non-UPW model increases with M only with a diminishing return and gets saturated eventually. To gain more insights, we further study the special case of uniform linear array (ULA)-based XL-IRS, for which a closed-form SNR expression in terms of the IRS size and transmitter/receiver location is derived. This result shows that the SNR mainly depends on the two geometric angles formed by the transmitter/receiver locations with the IRS, as well as the boundary points of the IRS. Numerical results validate our analysis and demonstrate the importance of proper channel modelling for wireless communications aided by XL-IRS.



قيم البحث

اقرأ أيضاً

105 - Rui Wang , Zhe Xing , Erwu Liu 2021
Intelligent reflecting surface (IRS) is a novel burgeoning concept, which possesses advantages in enhancing wireless communication and user localization, while maintaining low hardware cost and energy consumption. Herein, we establish an IRS-aided mm Wave-MIMO based joint localization and communication system (IMM-JLCS), and probe into its performance evaluation and optimization design. Specifically, first, we provide the signal, channel and estimation error models, and contrive the working process of the IMM-JLCS in detail. Then, by configuring appropriate IRS phase shifts, we derive the closed-form expressions of the Cramer-Rao Lower Bound (CRLB) of the position/orientation estimation errors and the effective achievable data rate (EADR), with respect to the time allocation ratio of the beam alignment and localization stage (BALS). Subsequently, we investigate the trade-off between the two performance metrics, for which we propose a joint optimization algorithm. Finally, we carry out simulations and comparisons to view the trade-off and validate the effectiveness of the proposed algorithm, in the presence of distinct levels of estimation uncertainty and user mobility. Our results demonstrate that the proposed algorithm can find the joint optimal solution for the position/orientation estimation accuracy and EADR, with its optimization performance being robust to slight localization or channel estimation errors and user mobility.
164 - Ming-Min Zhao , An Liu , Rui Zhang 2020
In intelligent reflecting surface (IRS) aided wireless communication systems, channel state information (CSI) is crucial to achieve its promising passive beamforming gains. However, CSI errors are inevitable in practice and generally correlated over the IRS reflecting elements due to the limited training with discrete phase shifts, which degrade the data transmission rate and reliability. In this paper, we focus on investigating the effect of CSI errors to the outage performance in an IRS-aided multiuser downlink communication system. Specifically, we aim to jointly optimize the active transmit precoding vectors at the access point (AP) and passive discrete phase shifts at the IRS to minimize the APs transmit power, subject to the constraints on the maximum CSI-error induced outage probability for the users. First, we consider the single-user case and derive the users outage probability in terms of the mean signal power (MSP) and variance of the received signal at the user. Since there is a trade-off in tuning these two parameters to minimize the outage probability, we propose to maximize their weighted sum with the optimal weight found by one-dimensional search. Then, for the general multiuser case, since the users outage probabilities are difficult to obtain in closed-form due to the inter-user interference, we propose a novel constrained stochastic successive convex approximation (CSSCA) algorithm, which replaces the non-convex outage probability constraints with properly designed convex surrogate approximations. Simulation results verify the effectiveness of the proposed robust beamfoming algorithms and show their significant performance improvement over various benchmark schemes.
Intelligent reflecting surface (IRS) is a promising new paradigm to achieve high spectral and energy efficiency for future wireless networks by reconfiguring the wireless signal propagation via passive reflection. To reap the potential gains of IRS, channel state information (CSI) is essential, whereas channel estimation errors are inevitable in practice due to limited channel training resources. In this paper, in order to optimize the performance of IRS-aided multiuser systems with imperfect CSI, we propose to jointly design the active transmit precoding at the access point (AP) and passive reflection coefficients of IRS, each consisting of not only the conventional phase shift and also the newly exploited amplitude variation. First, the achievable rate of each user is derived assuming a practical IRS channel estimation method, which shows that the interference due to CSI errors is intricately related to the AP transmit precoders, the channel training power and the IRS reflection coefficients during both channel training and data transmission. Then, for the single-user case, by combining the benefits of the penalty method, Dinkelbach method and block successive upper-bound minimization (BSUM) method, a new penalized Dinkelbach-BSUM algorithm is proposed to optimize the IRS reflection coefficients for maximizing the achievable data transmission rate subjected to CSI errors; while for the multiuser case, a new penalty dual decomposition (PDD)-based algorithm is proposed to maximize the users weighted sum-rate. Simulation results are presented to validate the effectiveness of our proposed algorithms as compared to benchmark schemes. In particular, useful insights are drawn to characterize the effect of IRS reflection amplitude control (with/without the conventional phase shift) on the system performance under imperfect CSI.
Intelligent reflection surface (IRS) is emerging as a promising technique for future wireless communications. Considering its excellent capability in customizing the channel conditions via energy-focusing and energy-nulling, it is an ideal technique for enhancing wireless communication security and privacy, through the theories of physical layer security and covert communications, respectively. In this article, we first present some results on applying IRS to improve the average secrecy rate in wiretap channels, to enable perfect communication covertness, and to deliberately create extra randomness in wireless propagations for hiding active wireless transmissions. Then, we identify multiple challenges for future research to fully unlock the benefits offered by IRS in the context of physical layer security and covert communications. With the aid of extensive numerical studies, we demonstrate the necessity of designing the amplitudes of the IRS elements in wireless communications with the consideration of security and privacy, where the optimal values are not always $1$ as commonly adopted in the literature. Furthermore, we reveal the tradeoff between the achievable secrecy performance and the estimation accuracy of the IRSs channel state information (CSI) at both the legitimate and malicious users, which presents the fundamental resource allocation challenge in the context of IRS-aided physical layer security. Finally, a passive channel estimation methodology exploiting deep neural networks and scene images is discussed as a potential solution to enabling CSI availability without utilizing resource-hungry pilots. This methodology serves as a visible pathway to significantly improving the covert communication rate in IRS-aided wireless networks.
This work examines the performance gain achieved by deploying an intelligent reflecting surface (IRS) in covert communications. To this end, we formulate the joint design of the transmit power and the IRS reflection coefficients by taking into accoun t the communication covertness for the cases with global channel state information (CSI) and without a wardens instantaneous CSI. For the case of global CSI, we first prove that perfect covertness is achievable with the aid of the IRS even for a single-antenna transmitter, which is impossible without an IRS. Then, we develop a penalty successive convex approximation (PSCA) algorithm to tackle the design problem. Considering the high complexity of the PSCA algorithm, we further propose a low-complexity two-stage algorithm, where analytical expressions for the transmit power and the IRSs reflection coefficients are derived. For the case without the wardens instantaneous CSI, we first derive the covertness constraint analytically facilitating the optimal phase shift design. Then, we consider three hardware-related constraints on the IRSs reflection amplitudes and determine their optimal designs together with the optimal transmit power. Our examination shows that significant performance gain can be achieved by deploying an IRS into covert communications.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا