ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaussian Bounding Boxes and Probabilistic Intersection-over-Union for Object Detection

75   0   0.0 ( 0 )
 نشر من قبل Jeffri Murrugarra Llerena
 تاريخ النشر 2021
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

Most object detection methods use bounding boxes to encode and represent the object shape and location. In this work, we explore a fuzzy representation of object regions using Gaussian distributions, which provides an implicit binary representation as (potentially rotated) ellipses. We also present a similarity measure for the Gaussian distributions based on the Hellinger Distance, which can be viewed as a Probabilistic Intersection-over-Union (ProbIoU). Our experimental results show that the proposed Gaussian representations are closer to annotated segmentation masks in publicly available datasets, and that loss functions based on ProbIoU can be successfully used to regress the parameters of the Gaussian representation. Furthermore, we present a simple mapping scheme from traditional (or rotated) bounding boxes to Gaussian representations, allowing the proposed ProbIoU-based losses to be seamlessly integrated into any object detector.

قيم البحث

اقرأ أيضاً

We propose a novel, conceptually simple and general framework for instance segmentation on 3D point clouds. Our method, called 3D-BoNet, follows the simple design philosophy of per-point multilayer perceptrons (MLPs). The framework directly regresses 3D bounding boxes for all instances in a point cloud, while simultaneously predicting a point-level mask for each instance. It consists of a backbone network followed by two parallel network branches for 1) bounding box regression and 2) point mask prediction. 3D-BoNet is single-stage, anchor-free and end-to-end trainable. Moreover, it is remarkably computationally efficient as, unlike existing approaches, it does not require any post-processing steps such as non-maximum suppression, feature sampling, clustering or voting. Extensive experiments show that our approach surpasses existing work on both ScanNet and S3DIS datasets while being approximately 10x more computationally efficient. Comprehensive ablation studies demonstrate the effectiveness of our design.
In this work, we present a novel method for combining predictions of object detection models: weighted boxes fusion. Our algorithm utilizes confidence scores of all proposed bounding boxes to constructs the averaged boxes. We tested method on several datasets and evaluated it in the context of the Open Images and COCO Object Detection tracks, achieving top results in these challenges. The source code is publicly available at https://github.com/ZFTurbo/Weighted-Boxes-Fusion
Large-scale object detection datasets (e.g., MS-COCO) try to define the ground truth bounding boxes as clear as possible. However, we observe that ambiguities are still introduced when labeling the bounding boxes. In this paper, we propose a novel bo unding box regression loss for learning bounding box transformation and localization variance together. Our loss greatly improves the localization accuracies of various architectures with nearly no additional computation. The learned localization variance allows us to merge neighboring bounding boxes during non-maximum suppression (NMS), which further improves the localization performance. On MS-COCO, we boost the Average Precision (AP) of VGG-16 Faster R-CNN from 23.6% to 29.1%. More importantly, for ResNet-50-FPN Mask R-CNN, our method improves the AP and AP90 by 1.8% and 6.2% respectively, which significantly outperforms previous state-of-the-art bounding box refinement methods. Our code and models are available at: github.com/yihui-he/KL-Loss
Training object class detectors typically requires a large set of images in which objects are annotated by bounding-boxes. However, manually drawing bounding-boxes is very time consuming. We propose a new scheme for training object detectors which on ly requires annotators to verify bounding-boxes produced automatically by the learning algorithm. Our scheme iterates between re-training the detector, re-localizing objects in the training images, and human verification. We use the verification signal both to improve re-training and to reduce the search space for re-localisation, which makes these steps different to what is normally done in a weakly supervised setting. Extensive experiments on PASCAL VOC 2007 show that (1) using human verification to update detectors and reduce the search space leads to the rapid production of high-quality bounding-box annotations; (2) our scheme delivers detectors performing almost as good as those trained in a fully supervised setting, without ever drawing any bounding-box; (3) as the verification task is very quick, our scheme substantially reduces total annotation time by a factor 6x-9x.
Video analysis has been moving towards more detailed interpretation (e.g. segmentation) with encouraging progresses. These tasks, however, increasingly rely on densely annotated training data both in space and time. Since such annotation is labour-in tensive, few densely annotated video data with detailed region boundaries exist. This work aims to resolve this dilemma by learning to automatically generate region boundaries for all frames of a video from sparsely annotated bounding boxes of target regions. We achieve this with a Volumetric Graph Convolutional Network (VGCN), which learns to iteratively find keypoints on the region boundaries using the spatio-temporal volume of surrounding appearance and motion. The global optimization of VGCN makes it significantly stronger and generalize better than existing solutions. Experimental results using two latest datasets (one real and one synthetic), including ablation studies, demonstrate the effectiveness and superiority of our method.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا