ترغب بنشر مسار تعليمي؟ اضغط هنا

Flowing from intersection product to cup product

104   0   0.0 ( 0 )
 نشر من قبل Anibal M. Medina-Mardones
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We use a vector field flow defined through a cubulation of a closed manifold to reconcile the partially defined commutative product on geometric cochains with the standard cup product on cubical cochains, which is fully defined and commutative only up to coherent homotopies. The interplay between intersection and cup product dates back to the beginnings of homology theory, but, to our knowledge, this result is the first to give an explicit cochain level comparison between these approaches.



قيم البحث

اقرأ أيضاً

We prove the vanishing of the cup product of the bounded cohomology classes associated to any two Brooks quasimorphisms on the free group. This is a consequence of the vanishing of the square of a universal class for tree automorphism groups.
We prove the formula $TC(Gast H)=max{TC(G), TC(H), cd(Gtimes H)}$ for the topological complexity of the free product of discrete groups with cohomological dimension >2.
We extend to positive real weights Haberlands formula giving a cohomological description of the Petersson scalar product of modular cusp forms of positive even weight. This relation is based on the cup product of an Eichler cocycle and a Knopp cocycl e. We also consider the cup product of two Eichler cocycles attached to modular forms. In the classical context of integral weights at least $2$ this cup product is uninteresting. We show evidence that for real weights this cup product may very well be non-trivial. We approach the question whether the cup product is a non-trivial coinvariant by duality with a space of entire modular forms. Under suitable conditions on the weights this leads to an explicit triple integral involving three modular forms. We use this representation to study the cup product numerically.
We prove that for geometrically finite groups cohomological dimension of the direct product of a group with itself equals 2 times the cohomological dimension dimension of the group.
107 - Elizabeth Vidaurre 2017
The construction of a simplicial complex given by polyhedral joins (introduced by Anton Ayzenberg), generalizes Bahri, Bendersky, Cohen and Gitlers $J$-construction and simplicial wedge construction. This article gives a cohomological decomposition o f a polyhedral product over a polyhedral join for certain families of pairs of simplicial complexes. A formula for the Hilbert-Poincar{e} series is given, which generalizes Ayzenbergs formula for the moment-angle complex.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا