ﻻ يوجد ملخص باللغة العربية
We use a vector field flow defined through a cubulation of a closed manifold to reconcile the partially defined commutative product on geometric cochains with the standard cup product on cubical cochains, which is fully defined and commutative only up to coherent homotopies. The interplay between intersection and cup product dates back to the beginnings of homology theory, but, to our knowledge, this result is the first to give an explicit cochain level comparison between these approaches.
We prove the vanishing of the cup product of the bounded cohomology classes associated to any two Brooks quasimorphisms on the free group. This is a consequence of the vanishing of the square of a universal class for tree automorphism groups.
We prove the formula $TC(Gast H)=max{TC(G), TC(H), cd(Gtimes H)}$ for the topological complexity of the free product of discrete groups with cohomological dimension >2.
We extend to positive real weights Haberlands formula giving a cohomological description of the Petersson scalar product of modular cusp forms of positive even weight. This relation is based on the cup product of an Eichler cocycle and a Knopp cocycl
We prove that for geometrically finite groups cohomological dimension of the direct product of a group with itself equals 2 times the cohomological dimension dimension of the group.
The construction of a simplicial complex given by polyhedral joins (introduced by Anton Ayzenberg), generalizes Bahri, Bendersky, Cohen and Gitlers $J$-construction and simplicial wedge construction. This article gives a cohomological decomposition o