ترغب بنشر مسار تعليمي؟ اضغط هنا

Adaptive Robust Data-driven Building Control via Bi-level Reformulation: an Experimental Result

69   0   0.0 ( 0 )
 نشر من قبل Yingzhao Lian
 تاريخ النشر 2021
والبحث باللغة English




اسأل ChatGPT حول البحث

In the era of digitalization, utilization of data-driven control approaches to minimize energy consumption of residential/commercial building is of far-reaching significance. Meanwhile, A number of recent approaches based on the application of Willems fundamental lemma for data-driven controller design from input/output measurements are very promising for deterministic LTI systems. This paper addresses the key noise-free assumption, and extends these data-driven control schemes to adaptive building control with measured process noise and unknown measurement noise via a robust bilevel formulation, whose upper level ensures robustness and whose lower level guarantees prediction quality. Corresponding numerical improvements and an active excitation mechanism are proposed to enable a computationally efficient reliable operation. The efficacy of the proposed scheme is validated by a numerical example and a real-world experiment on a lecture hall on EPFL campus.



قيم البحث

اقرأ أيضاً

134 - Wei-Han Chen , Fengqi You 2019
Appropriate greenhouse temperature should be maintained to ensure crop production while minimizing energy consumption. Even though weather forecasts could provide a certain amount of information to improve control performance, it is not perfect and f orecast error may cause the temperature to deviate from the acceptable range. To inherent uncertainty in weather that affects control accuracy, this paper develops a data-driven robust model predictive control (MPC) approach for greenhouse temperature control. The dynamic model is obtained from thermal resistance-capacitance modeling derived by the Building Resistance-Capacitance Modeling (BRCM) toolbox. Uncertainty sets of ambient temperature and solar radiation are captured by support vector clustering technique, and they are further tuned for better quality by training-calibration procedure. A case study that implements the carefully chosen uncertainty sets on robust model predictive control shows that the data-driven robust MPC has better control performance compared to rule-based control, certainty equivalent MPC, and robust MPC.
An autonomous adaptive MPC architecture is presented for control of heating, ventilation and air condition (HVAC) systems to maintain indoor temperature while reducing energy use. Although equipment use and occupant changes with time, existing MPC me thods are not capable of automatically relearning models and computing control decisions reliably for extended periods without intervention from a human expert. We seek to address this weakness. Two major features are embedded in the proposed architecture to enable autonomy: (i) a system identification algorithm from our prior work that periodically re-learns building dynamics and unmeasured internal heat loads from data without requiring re-tuning by experts. The estimated model is guaranteed to be stable and has desirable physical properties irrespective of the data; (ii) an MPC planner with a convex approximation of the original nonconvex problem. The planner uses a descent and convergent method, with the underlying optimization problem being feasible and convex. A year long simulation with a realistic plant shows that both of the features of the proposed architecture - periodic model and disturbance update and convexification of the planning problem - are essential to get the performance improvement over a commonly used baseline controller. Without these features, though MPC can outperform the baseline controller in certain situations, the benefits may not be substantial enough to warrant the investment in MPC.
Accounting for more than 40% of global energy consumption, residential and commercial buildings will be key players in any future green energy systems. To fully exploit their potential while ensuring occupant comfort, a robust control scheme is requi red to handle various uncertainties, such as external weather and occupant behaviour. However, prominent patterns, especially periodicity, are widely seen in most sources of uncertainty. This paper incorporates this correlated structure into the learning model predictive control framework, in order to learn a global optimal robust control scheme for building operations.
This paper provides an exponential stability result for the adaptive anti-unwinding attitude tracking control problem of a rigid body with uncertain but constant inertia parameters, without requiring the satisfaction of persistent excitation (PE) con dition. Specifically, a composite immersion and invariance (I&I) adaptive controller is derived by integrating a prediction-error-driven learning law into the dynamically scaled I&I adaptive control framework, wherein we modify the scaling factor so that the algorithm design does not involve any dynamic gains. To avoid the unwinding problem, a barrier function is introduced as the attitude error function, along with the tactful establishment of two crucial algebra properties for exponential stability analysis. The regressor filtering method is adopted in combination with the dynamic regressor extension and mixing (DREM) procedure to acquire the prediction error using only easily obtainable signals. In particular, aiding by a constructive liner time-varying filter, the scalar regressor of DREM is extended to generate a new exciting counterpart. In this way, the derived controller is shown to permit closed-loop exponential stability without PE, in the sense that both output-tracking and parameter estimation errors exponentially converge to zero. Further, the composite learning law is augmented with a power term to achieve synchronized finite/fixed-time parameter convergence. Numerical simulations are performed to verify the theoretical findings.
Building energy management is one of the core problems in modern power grids to reduce energy consumption while ensuring occupants comfort. However, the building energy management system (BEMS) is now facing more challenges and uncertainties with the increasing penetration of renewables and complicated interactions between humans and buildings. Classical model predictive control (MPC) has shown its capacity to reduce building energy consumption, but it suffers from labor-intensive modelling and complex on-line control optimization. Recently, with the growing accessibility to the building control and automation data, data-driven solutions have attracted more research interest. This paper presents a compact review of the recent advances in data-driven MPC and reinforcement learning based control methods for BEMS. The main challenges in these approaches and insights on the selection of a control method are discussed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا