ﻻ يوجد ملخص باللغة العربية
In this paper, we first study the well-posedness of a class of McKean-Vlasov stochastic partial differential equations driven by cylindrical $alpha$-stable process, where $alphain(1,2)$. Then by the method of the Khasminskiis time discretization, we prove the averaging principle of a class of multiscale McKean-Vlasov stochastic partial differential equations driven by cylindrical $alpha$-stable processes. Meanwhile, we obtain a specific strong convergence rate.
In this paper, the averaging principle is studied for a class of multiscale stochastic partial differential equations driven by $alpha$-stable process, where $alphain(1,2)$. Using the technique of Poisson equation, the orders of strong and weak conve
In this paper, the strong averaging principle is researched for a class of H{o}lder continuous drift slow-fast SPDEs with $alpha$-stable process by the Zvonkins transformation and the classical Khasminkiis time discretization method. As applications,
In this paper, we aim to study the asymptotic behaviour for a class of McKean-Vlasov stochastic partial differential equations with slow and fast time-scales. Using the variational approach and classical Khasminskii time discretization, we show that
In this paper, we study a system of stochastic partial differential equations with slow and fast time-scales, where the slow component is a stochastic real Ginzburg-Landau equation and the fast component is a stochastic reaction-diffusion equation, t
In this paper, we study a class of slow-fast stochastic partial differential equations with multiplicative Wiener noise. Under some appropriate conditions, we prove the slow component converges to the solution of the corresponding averaged equation w