ﻻ يوجد ملخص باللغة العربية
We discuss counterexamples to the validity of the weak Maximum Principle for linear elliptic systems with zero and first order couplings and prove, through a suitable reduction to a nonlinear scalar equation, a quite general result showing that some algebraic condition on the structure of gradient couplings and a cooperativity condition on the matrix of zero order couplings guarantee the existence of invariant cones in the sense of Weinberger [21].
We study boundary gradient estimates for second-order divergence type parabolic and elliptic systems in $C^{1,alpha}$ domains. The coefficients and data are assumed to be Holder in the time variable and all but one spatial variables. This type of sys
Consider an elliptic self-adjoint pseudodifferential operator $A$ acting on $m$-columns of half-densities on a closed manifold $M$, whose principal symbol is assumed to have simple eigenvalues. We show existence and uniqueness of $m$ orthonormal pseu
Consider an elliptic self-adjoint pseudodifferential operator $A$ acting on $m$-columns of half-densities on a closed manifold $M$, whose principal symbol is assumed to have simple eigenvalues. We show that the spectrum of $A$ decomposes, up to an er
In this work we consider a system of k non-linear elliptic equations where the non-linear term is the sum of a quadratic form and a sub-critic term. We show that under suitable assumptions, e.g. when the non-linear term has a zero with non-zero coord
This paper is focused on the local interior $W^{1,infty}$-regularity for weak solutions of degenerate elliptic equations of the form $text{div}[mathbf{a}(x,u, abla u)] +b(x, u, abla u) =0$, which include those of $p$-Laplacian type. We derive an ex