ﻻ يوجد ملخص باللغة العربية
A continuous family of singular solitary waves exists in a prototypical system with intensity-dependent dispersion. The family has a cusped soliton as the limiting lowest energy state and is formed by the solitary waves with bell-shaped heads of different lengths. We show that this family can be obtained variationally by minimization of mass at fixed energy and fixed length of the bell-shaped head. We develop a weak formulation for the singular solitary waves and prove that they are stable under perturbations which do not change the length of the bell-shaped head. Numerical simulations confirm the stability of the singular solitary waves.
Soliton solutions are studied for paraxial wave propagation with intensity-dependent dispersion. Although the corresponding Lagrangian density has a singularity, analytical solutions, derived by the pseudo-potential method and the corresponding phase
Theoretical and experimental results on optical ring dark solitary waves are presented, emphasizing the interplay between initial dark beam contrast, phase-shift magnitude, background-beam intensity and saturation of the nonlinearity are presented. T
A higher-order dispersive equation is introduced as a candidate for the governing equation of a field theory. A new class of solutions of the three-dimensional field equation are considered, which are not localized functions in the sense of the integ
We discuss the solitary wave solutions of a particular two-component scalar field model in two-dimensional Minkowski space. These solitary waves involve one, two or four lumps of energy. The adiabatic motion of these composite non-linear non-dispersive waves points to variations in shape.
We consider the interplay between nonlocal nonlinearity and randomness for two different nonlinear Schrodinger models. We show that stability of bright solitons in presence of random perturbations increases dramatically with the nonlocality-induced f