ترغب بنشر مسار تعليمي؟ اضغط هنا

Robust Prediction Interval estimation for Gaussian Processes by Cross-Validation method

70   0   0.0 ( 0 )
 نشر من قبل Naoufal Acharki
 تاريخ النشر 2021
  مجال البحث الاحصاء الرياضي
والبحث باللغة English




اسأل ChatGPT حول البحث

Probabilistic regression models typically use the Maximum Likelihood Estimation or Cross-Validation to fit parameters. Unfortunately, these methods may give advantage to the solutions that fit observations in average, but they do not pay attention to the coverage and the width of Prediction Intervals. In this paper, we address the question of adjusting and calibrating Prediction Intervals for Gaussian Processes Regression. First we determine the models parameters by a standard Cross-Validation or Maximum Likelihood Estimation method then we adjust the parameters to assess the optimal type II Coverage Probability to a nominal level. We apply a relaxation method to choose parameters that minimize the Wasserstein distance between the Gaussian distribution of the initial parameters (Cross-Validation or Maximum Likelihood Estimation) and the proposed Gaussian distribution among the set of parameters that achieved the desired Coverage Probability.



قيم البحث

اقرأ أيضاً

Generalized Gaussian processes (GGPs) are highly flexible models that combine latent GPs with potentially non-Gaussian likelihoods from the exponential family. GGPs can be used in a variety of settings, including GP classification, nonparametric coun t regression, modeling non-Gaussian spatial data, and analyzing point patterns. However, inference for GGPs can be analytically intractable, and large datasets pose computational challenges due to the inversion of the GP covariance matrix. We propose a Vecchia-Laplace approximation for GGPs, which combines a Laplace approximation to the non-Gaussian likelihood with a computationally efficient Vecchia approximation to the GP, resulting in a simple, general, scalable, and accurate methodology. We provide numerical studies and comparisons on simulated and real spatial data. Our methods are implemented in a freely available R package.
We consider the problem of training robust and accurate deep neural networks (DNNs) when subject to various proportions of noisy labels. Large-scale datasets tend to contain mislabeled samples that can be memorized by DNNs, impeding the performance. With appropriate handling, this degradation can be alleviated. There are two problems to consider: how to distinguish clean samples and how to deal with noisy samples. In this paper, we present Ensemble Noise-robust K-fold Cross-Validation Selection (E-NKCVS) to effectively select clean samples from noisy data, solving the first problem. For the second problem, we create a new pseudo label for any sample determined to have an uncertain or likely corrupt label. E-NKCVS obtains multiple predicted labels for each sample and the entropy of these labels is used to tune the weight given to the pseudo label and the given label. Theoretical analysis and extensive verification of the algorithms in the noisy label setting are provided. We evaluate our approach on various image and text classification tasks where the labels have been manually corrupted with different noise ratios. Additionally, two large real-world noisy datasets are also used, Clothing-1M and WebVision. E-NKCVS is empirically shown to be highly tolerant to considerable proportions of label noise and has a consistent improvement over state-of-the-art methods. Especially on more difficult datasets with higher noise ratios, we can achieve a significant improvement over the second-best model. Moreover, our proposed approach can easily be integrated into existing DNN methods to improve their robustness against label noise.
The equations of a physical constitutive model for material stress within tantalum grains were solved numerically using a tetrahedrally meshed volume. The resulting output included a scalar vonMises stress for each of the more than 94,000 tetrahedra within the finite element discretization. In this paper, we define an intricate statistical model for the spatial field of vonMises stress which uses the given grain geometry in a fundamental way. Our model relates the three-dimensional field to integrals of latent stochastic processes defined on the vertices of the one- and two-dimensional grain boundaries. An intuitive neighborhood structure of said boundary nodes suggested the use of a latent Gaussian Markov random field (GMRF). However, despite the potential for computational gains afforded by GMRFs, the integral nature of our model and the sheer number of data points pose substantial challenges for a full Bayesian analysis. To overcome these problems and encourage efficient exploration of the posterior distribution, a number of techniques are now combined: parallel computing, sparse matrix methods, and a modification of a block update strategy within the sampling routine. In addition, we use an auxiliary variables approach to accommodate the presence of outliers in the data.
Over the past years, many applications aim to assess the causal effect of treatments assigned at the community level, while data are still collected at the individual level among individuals of the community. In many cases, one wants to evaluate the effect of a stochastic intervention on the community, where all communities in the target population receive probabilistically assigned treatments based on a known specified mechanism (e.g., implementing a community-level intervention policy that target stochastic changes in the behavior of a target population of communities). The tmleCommunity package is recently developed to implement targeted minimum loss-based estimation (TMLE) of the effect of community-level intervention(s) at a single time point on an individual-based outcome of interest, including the average causal effect. Implementations of the inverse-probability-of-treatment-weighting (IPTW) and the G-computation formula (GCOMP) are also available. The package supports multivariate arbitrary (i.e., static, dynamic or stochastic) interventions with a binary or continuous outcome. Besides, it allows user-specified data-adaptive machine learning algorithms through SuperLearner, sl3 and h2oEnsemble packages. The usage of the tmleCommunity package, along with a few examples, will be described in this paper.
This paper presents the first general (supervised) statistical learning framework for point processes in general spaces. Our approach is based on the combination of two new concepts, which we define in the paper: i) bivariate innovations, which are m easures of discrepancy/prediction-accuracy between two point processes, and ii) point process cross-validation (CV), which we here define through point process thinning. The general idea is to carry out the fitting by predicting CV-generated validation sets using the corresponding training sets; the prediction error, which we minimise, is measured by means of bivariate innovations. Having established various theoretical properties of our bivariate innovations, we study in detail the case where the CV procedure is obtained through independent thinning and we apply our statistical learning methodology to three typical spatial statistical settings, namely parametric intensity estimation, non-parametric intensity estimation and Papangelou conditional intensity fitting. Aside from deriving theoretical properties related to these cases, in each of them we numerically show that our statistical learning approach outperforms the state of the art in terms of mean (integrated) squared error.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا