ﻻ يوجد ملخص باللغة العربية
The 0+1-d Sachdev-Ye-Kitaev (SYK) fermionic model attracts nowadays a wide spread interest of the Condensed Matter community, as a benchmark toy model for strong electron correlation and non Fermi Liquid behavior. It is exactly solvable in the infrared limit and reproduces the linear dependence of the resistivity on temperature T, in linear response, typical of the strange metal phase of High Temperature Superconducting (HTS) materials. The breaking of its conformal symmetry requires ultraviolet corrections for a faithful description of its pseudo Goldstone Modes. Extension of the model to higher space dimension includes a local U(1) phase generating collective bosonic excitations driven by the additional ultraviolet contribution to the action. These excitations are studied here, in a temperature window of incoherent dynamics in which the expected chaotic regime has not yet taken over. We identify them as neutral diffusive energy excitations with temperature dependent lifetime h / k_B T. They provide thermalization of the system and contribute to the T dependence of the transport coefficients. The linear unbound T increase of particle current is confirmed by our hydrodynamic modelization. A quantum liquid in interaction with this system would become a Marginal Fermi Liquid.
We study the original Sachdev-Ye (SY) model in its Majorana fermion representation which can be called the two indices Sachdev-Ye-Kitaev (SYK) model. Its advantage over the original SY model in the $ SU(M) $ complex fermion representation is that it
Supersymmetry is a powerful concept in quantum many-body physics. It helps to illuminate ground state properties of complex quantum systems and gives relations between correlation functions. In this work, we show that the Sachdev-Ye-Kitaev model, in
We introduce a spinful variant of the Sachdev-Ye-Kitaev model with an effective time reversal symmetry, which can be solved exactly in the limit of a large number $N$ of degrees of freedom. At low temperature, its phase diagram includes a compressibl
In this work we investigate whether the Kitaev honeycomb model can serve as a starting point to realize the intriguing physics of the Sachdev-Ye-Kitaev model. The starting point is to strain the system which leads to flat bands reminiscent of Landau
Periodically driven quantum matter can realize exotic dynamical phases. In order to understand how ubiquitous and robust these phases are, it is pertinent to investigate the heating dynamics of generic interacting quantum systems. Here we study the t