ترغب بنشر مسار تعليمي؟ اضغط هنا

Chemical abundance patterns in Local Group galaxies within cosmological simulations

136   0   0.0 ( 0 )
 نشر من قبل Luis Biaus
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the context of the concordance cosmology, structure formation in the Universe is the result of the amplification, by gravitational effects, of small perturbations in the primeval density field. This results in the formation of structures known as dark matter haloes, where gas collapses and forms stars, giving birth to galaxies. Numerical simulations are an important tool in the theoretical study of galaxy formation and evolution. In the present work, we describe the implementation of a chemical enrichment model in a state-of-the-art cosmological simulation of the Local Group. The simulation includes sub-grid models for the most relevant physical processes. We analyze the chemical and morphological evolution of two galaxies with virial masses similar to that of our Milky Way. For each of the stellar components (disc, bulge and halo), we establish links between their formation history and their chemical evolution. We find that $alpha$-element (O, Mg, Si) enrichment happens at early stages of evolution, as their main producers are short-lived stars which end their lives as type II supernova explosions. There is also a gradual contamination with the rest of the elements as type Ia supernovae and winds of stars in the asymptotic giant branch occur.

قيم البحث

اقرأ أيضاً

With the advent of large spectroscopic surveys the amount of high quality chemo-dynamical data in the Milky Way (MW) increased tremendously. Accurately and correctly capturing and explaining the detailed features in the high-quality observational dat a is notoriously difficult for state-of-the-art numerical models. In order to keep up with the quantity and quality of observational datasets, improved prescriptions for galactic chemical evolution need to be incorporated into the simulations. Here we present a new, flexible, time resolved chemical enrichment model for cosmological simulations. Our model allows to easily change a number of stellar physics parameters such as the shape of the initial mass function (IMF), stellar lifetimes, chemical yields or SN Ia delay times. We implement our model into the Gasoline2 code and perform a series of cosmological simulations varying a number of key parameters, foremost evaluating different stellar yield sets for massive stars from the literature. We find that total metallicity, total iron abundance and gas phase oxygen abundance are robust predictions from different yield sets and in agreement with observational relations. On the other hand, individual element abundances, especially $alpha$-elements show significant differences across different yield sets and none of our models can simultaneously match constraints on the dwarf and MW mass scale. This offers a unique way of observationally constraining model parameters. For MW mass galaxies we find for most yield tables tested in this work a bimodality in the $[alpha$/Fe] vs. [Fe/H] plane of rather low intrinsic scatter potentially in tension with the observed abundance scatter.
We use the APOSTLE and Auriga cosmological simulations to study the star formation histories (SFHs) of field and satellite dwarf galaxies. Despite sizeable galaxy-to-galaxy scatter, the SFHs of APOSTLE and Auriga dwarfs exhibit robust average trends with galaxy stellar mass: faint field dwarfs ($10^5<M_{rm star}/M_odot<10^{6.5}$) have, on average, steadily declining SFHs, whereas brighter dwarfs ($10^{7.5}<M_{rm star}/M_odot<10^{9}$) show the opposite trend. Intermediate-mass dwarfs have roughly constant SFHs. Satellites exhibit similar average trends, but with substantially suppressed star formation in the most recent $sim 5$ Gyr, likely as a result of gas loss due to tidal and ram-pressure stripping after entering the haloes of their primaries. These simple mass and environmental trends are in good agreement with the derived SFHs of Local Group (LG) dwarfs whose photometry reaches the oldest main sequence turnoff. SFHs of galaxies with less deep data show deviations from these trends, but this may be explained, at least in part, by the large galaxy-to-galaxy scatter, the limited sample size, and the large uncertainties of the inferred SFHs. Confirming the predicted mass and environmental trends will require deeper photometric data than currently available, especially for isolated dwarfs.
We perform a suite of cosmological hydrodynamical simulations of disc galaxies, with zoomed-in initial conditions leading to the formation of a halo of mass $M_{rm halo, , DM} simeq 2 cdot 10^{12}$ M$_{odot}$ at redshift $z=0$. These simulations aim at investigating the chemical evolution and the distribution of metals in a disc galaxy, and at quantifying the effect of $(i)$ the assumed IMF, $(ii)$ the adopted stellar yields, and $(iii)$ the impact of binary systems originating SNe Ia on the process of chemical enrichment. We consider either a Kroupa et al. (1993) or a more top-heavy Kroupa (2001) IMF, two sets of stellar yields and different values for the fraction of binary systems suitable to give rise to SNe Ia. We investigate stellar ages, SN rates, stellar and gas metallicity gradients, and stellar $alpha$-enhancement in simulations, and compare predictions with observations. We find that a Kroupa et al. (1993) IMF has to be preferred when modelling late-type galaxies in the local universe. On the other hand, the comparison of stellar metallicity profiles and $alpha$-enhancement trends with observations of Milky Way stars shows a better agreement when a Kroupa (2001) IMF is assumed. Comparing the predicted SN rates and stellar $alpha$-enhancement with observations supports a value for the fraction of binary systems producing SNe Ia of $0.03$, at least for late-type galaxies and for the considered IMFs. Adopted stellar yields are crucial in regulating cooling and star formation, and in determining patterns of chemical enrichment for stars, especially for those located in the galaxy bulge.
We identify Local Group (LG) analogs in the IllustrisTNG cosmological simulation, and use these to study two mass estimators for the LG: one based on the timing argument (TA) and one based on the virial theorem (VT). Including updated measurements of the Milky Way-M31 tangential velocity and the cosmological constant, we show that the TA mass estimator slightly overestimates the true median LG-mass, though the ratio of the TA to the true mass is consistent at the approximate 90% c.l. These are in broad agreement with previous results using dark matter-only simulations. We show that the VT estimator better estimates the true LG-mass, though there is a larger scatter in the virial mass to true mass ratio relative to the corresponding ratio for the TA. We attribute the broader scatter in the VT estimator to several factors, including the predominantly radial orbits for LG satellite galaxies, which differs from the VT assumption of isotropic orbits. With the systematic uncertainties we derive, the updated measurements of the LG mass at 90% c.l. are $4.75_{-2.41}^{+2.22} times 10^{12}$ M$_odot$ from the TA and $2.0_{-1.5}^{+2.1} times 10^{12}$ M$_odot$ from the VT.
We use the APOSTLE $Lambda$CDM cosmological hydrodynamical simulations of the Local Group to study the recent accretion of massive satellites into the halo of Milky Way (MW)-sized galaxies. These systems are selected to be close analogues to the Larg e Magellanic Cloud (LMC), the most massive satellite of the MW. The simulations allow us to address, in a cosmological context, the impact of the Clouds on the MW, including the contribution of Magellanic satellites to the MW satellite population, and the constraints placed on the Galactic potential by the motion of the LMC. We show that LMC-like satellites are twice more common around Local Group-like primaries than around isolated halos of similar mass; these satellites come from large turnaround radii and are on highly eccentric orbits whose velocities at first pericentre are comparable with the primarys escape velocity. This implies $V_{rm esc}^{rm MW} (50 $ kpc$)sim 365$ km/s, a strong constraint on Galactic potential models. LMC analogues contribute about 2 satellites with $M_*>10^5, M_odot$, having thus only a mild impact on the luminous satellite population of their hosts. At first pericentre, LMC-associated satellites are close to the LMC in position and velocity, and are distributed along the LMCs orbital plane. Their orbital angular momenta roughly align with the LMCs, but, interestingly, they may appear to counter-rotate the MW in some cases. These criteria refine earlier estimates of the LMC association of MW satellites: only the SMC, Hydrus1, Car3, Hor1, Tuc4, Ret2 and Phoenix2 are compatible with all criteria. Carina, Grus2, Hor2 and Fornax are less probable associates given their large LMC relative velocity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا